Prediction and Interpretation of Total N and Its Key Drivers in Cultivated Tropical Peat using Machine Learning and Game Theory
https://doi.org/10.52045/jca.v4i1.592
Keywords:
artificial intelligence, machine learning, pedotransfer functions, Shapley Additive Explanation/SHAP, Shapley valueAbstract
Currently, there is a growing interest among research communities in the development of statistical learning-based pedotransfer functions/PtFs to predict mineral soil nutrients; however, similar studies in peatlands are relatively rare. Moreover, extracting meaningful information from these ‘black-box’ models is crucial, particularly concerning their algorithmic complexity and the non-linear nature of the soil covariate interrelationships. This study employed the Pulunggono (2022a) dataset and the bootstrapping method, to (1) develop and evaluate seven PtF models, including both general linear models (GLM) and machine learning (ML) regressors for estimating total nitrogen (N) in tropical peat that has been drained and cultivated for oil palm (OP) in Riau, Indonesia and (2) explaining model functioning by incorporating Shapley Additive Explanation (SHAP), a tool derived from coalitional game theory. This study demonstrated the superior predictive performance of ML-based PtFs in estimating total N compared to GLM algorithms. The top-performing algorithms for PtF models were identified as GBM, XGB, and Cubist. The SHAP method revealed that sampling depth and organic C were consistently identified as the most important covariates across all models, irrespective of their algorithmic capabilities. Additionally, ML algorithms identified the total Fe, pH, and bulk density (BD) as significant covariates. Local explanations based on Shapley values indicated that the behavior of PtF-based algorithms diverged from their global explanations. This study emphasized the critical role of ML algorithms and game theory in accurately predicting total N in peatlands subjected to drainage and cultivation for OP and explaining their model behavior in relation to soil biogeochemical processes.
Downloads
References
Abimbola OP, Meyer GE, Mittelstet AR, Rudnick DR, & Franz TE. 2021. Knowledge‐guided machine learning for improving daily soil temperature prediction across the United States. Vadose Zone Journal, 20(5). https://doi.org/10.1002/vzj2.20151
Adeolu AR, Mohammad TA, Nik Daud NN, Sayok AK, Rory P & Stephanie E. 2018. Soil Carbon and Nitrogen Dynamics in a Tropical Peatland. Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions, 73-83. https://doi.org/10.1016/B978-0-12-812128-3.00006-9
Anda M, Ritung S, Suryani E, Hikmat M, Yatno E, Mulyani A, & Subandiono RE. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402:115235. https://doi.org/10.1016/j.geoderma.2021.115235
Baltensweiler A, Walthert L, Hanewinkel M, Zimmermann S, & Nussbaum M. 2021. Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland. Geoderma Regional, 27:e00437. https://doi.org/10.1016/j.geodrs.2021.e00437
Bou Dib J, Krishna, VV, Alamsyah Z & Qaim M. 2018. Land-use change and livelihoods of non-farm households: The role of income from employment in oil palm and rubber in rural Indonesia. Land Use Policy. 76:828–838. https://doi.org/10.1016/j.landusepol.2018.03.020
Bouma J. 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science, 177–213. https://doi.org/10.1007/978-1-4612-3532-3_4
Bouslihim Y, Rochdi A, & El Amrani Paaza N. 2021. Machine learning approaches for the prediction of soil aggregate stability. Heliyon, 7(3):e06480. https://doi.org/10.1016/j.heliyon.2021.e06480
Breiman L. 2001. Random forest. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Breiman L. 2002. Manual on Setting Up, Using, and Understanding Random Forests v3. 1., California (US): Statistics Department University of California Berkeley. p.1:58
Broeshart H, Ferwerda JD, & Kovachich WG. 1957. Mineral deficiency symptoms of the oil palm. Plant and Soil, 8(4):289–300. https://doi.org/10.1007/bf01666319
Chaddy A, Melling L, Ishikura K, & Hatano R. 2019. Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture, 9(10):213. https://doi.org/10.3390/agriculture9100213
Chaddy A, Melling L, Ishikura K, Goh KJ, Toma Y, & Hatano R. 2021. Effects of long-term nitrogen fertilization and ground water level changes on soil CO2 fluxes from oil palm plantation on tropical peatland. Atmosphere, 12(10):1340. https://doi.org/10.3390/atmos12101340
Chen T & Guestrin C. 2016. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16: 785–794. https://doi.org/10.1145/2939672.2939785
Chen T, He T, Benesty M, Khotilovich V,Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, Li M, Xie J, Lin M, Geng Y, Li Y, Yuan J, et al (XGBoost contributors). 2023. Package ‘xgboost’. Extreme Gradient Boosting. Retrieved from https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
Corley RHV & Tinker PB. 2015. The Oil Palm. https://doi.org/10.1002/9781118953297
Dhandapani S, Evers S, Ritz K & Sjögersten S. 2020. Nutrient and trace element concentrations influence greenhouse gas emissions from Malaysian tropical peatlands. Soil Use and Management, 37(1): 138-150. https://doi.org/10.1111/sum.12669
Dhandapani S, Girkin NT & Evers S. 2021. Spatial variability of surface peat properties and carbon emissions in a tropical peatland oil palm monoculture during a dry season. Soil Use and Management, 38(1): 381-395. https://doi.org/10.1111/sum.12741
Ditjen Perkebunan. 2011. Sustainable Palm Oil Development Policy. In Indonesia: Kebijakan Pengembangan Kelapa Sawit Berkelanjutan. Seminar on RSPO Implementation in Indonesia. Jakarta, 10 Februari 2011
Efron B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1): 1–26. https://doi.org/10.1214/aos/1176344552
Efron B & Tibshirani RJ. 1994. An Introduction to the Bootstrap. CRC Press, Boca Raton.
Engels C, Kirkby E, & White P. 2012. Mineral nutrition, yield and source–sink relationships. In Marchner P (Ed.) Marschner’s Mineral Nutrition of Higher Plants, Academic Press. p.85–133. https://doi.org/10.1016/b978-0-12-384905-2.00005-4
Forkuor G, Hounkpatin OKL, Welp G, & Thiel M. 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12(1):e0170478. https://doi.org/10.1371/journal.pone.0170478
Friedman JH. 2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189–1232. https://doi.org/10.1214/aos/1013203451
Friedman JH. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):367–378. https://doi.org/10.1016/s0167-9473(01)00065-2
Garson GD. 1991. Interpreting neural network connection weights. AI Expert, 6:47-51
Glendining MJ, Dailey AG, Powlson DS, Richter GM, Catt JA & Whitmore AP. 2010. Pedotransfer functions for estimating total soil nitrogen up to the global scale. European Journal of Soil Science, 62(1):13–22. https://doi.org/10.1111/j.1365-2389.2010.01336.x
Goh ATC. 1995. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3):143–151. https://doi.org/10.1016/0954-1810(94)00011-s
Goydaragh MG, Taghizadeh-Mehrjardi R, Jafarzadeh AA, Triantafilis J, & Lado M. 2021. Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon. Catena, 202:105280. https://doi.org/10.1016/j.catena.2021.105280
Greenwell B. 2023. Package ‘fastshap’. Fast Approximate Shapley Values. Retrieved from https://cran.r-project.org/web/packages/fastshap/fastshap.pdf
Greenwell B, Boehmke B & Cunningham J. 2022. Package ‘gbm’. Generalized Boosted Regression Models. Retrieved from https://cran.rproject.org/web/packages/gbm/index.html
Hall RL, de Santana FB, Grunsky EC, Browne MA, Lowe V, Fitzsimons M, Higgins S, Galagher V & Daly K. 2023. A machine learning approach to predicting plant available phosphorus that accounts for soil heterogeneity and regional variability. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-023-03648-y
Harianti M, Sutandi A, Saraswati R, Maswar & Sabiham S. 2018. Enzyme activities in relation to total K, Ca, Mg Fe, Cu, and Zn in the oil palm rhizosphere of Riau’s peatlands, Indonesia. Biotropia, 3(25):211-223. https://doi.org/10.11598/btb.2018.25.3.862
Hashim SA, Teh CBS & Ahmed OH. 2019. Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malaysian Journal of Soil Science, 23:13-30.
Ho TK. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844. https://doi.org/10.1109/34.709601
Hounkpatin KO, Bossa AY, Yira Y, Igue MA, & Sinsin BA. 2022. Assessment of the soil fertility status in Benin (West Africa) – Digital soil mapping using machine learning. Geoderma Regional, 28:e00444. https://doi.org/10.1016/j.geodrs.2021.e00444
Huang AA & Huang SY. 2023. Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations. PLOS ONE, 18(2). https://doi.org/10.1371/journal.pone.0281922
Huang F, Zhang Y, Zhang Y, Nourani V, Li Q, Li L, Shangguan W. 2023. Towards interpreting machine learning models for predicting soil moisture droughts. Environmental Research Letters, 18:074002. https://doi.org/10.1088/1748-9326/acdbe0
Hunt J. 2022. Package ‘ModelMetrics’. Rapid Calculation of Model Metrics. Retrieved from https://cran.r-project.org/web/packages/ModelMetrics/ModelMetrics.pdf
Iranpanah N, Mansourian A, Tashayo B & Haghighi F. 2010. Spatial semi-parametric bootstrap method for analysis of kriging predictor of random field. Procedia Environmental Sciences, 3:81-86. https://doi.org/10.1016/j.proenv.2011.02.015
James G, Witten D, Hastie T, Tibshirani R. 2021. An Introduction to Statistical Learning: with Applications in R. New York(US): Springer. https://doi.org/10.1007/978-1-0716-1418-1
Jas K & Dodagoudar G. 2023. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynamics and Earthquake Engineering, 165:107662. https://doi.org/10.1016/j.soildyn.2022.107662
Jones EJ, Bishop TF, Malone BP, Hulme PJ, Whelan BM & Filippi P. 2022. Identifying causes of crop yield variability with interpretive machine learning. Computers and Electronics in Agriculture, 192:106632. https://doi.org/10.1016/j.compag.2021.106632
Jordan MI & Mitchell TM. 2015. Machine learning: Trends, perspectives, and prospects. Science, 349(6245):255–260. https://doi.org/10.1126/science.aaa8415
Karasiak N, Dejoux J-F, Monteil, C & Sheeren D. 2021. Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing. Machine Learning. https://doi.org/10.1007/s10994-021-05972-1
Karim KH. 2023. Prediction of soil total nitrogen based on total organic carbon using different models in soils from the Iraqi Kurdistan Region. Passer Journal of Basic and Applied Sciences, 5(1): 178-182. https://doi.org/10.24271/psr.2023.388581.1274
Kaya F, Keshavarzi A, Francaviglia R, Kaplan G, Basayigit L, & Dedeoğlu M. 2022. Assessing machine learning-based prediction under different agricultural practices for digital mapping of soil organic carbon and available phosphorus. Agriculture, 12(7):1062. https://doi.org/10.3390/agriculture12071062
Koh LP, Miettinen J, Liew SC, & Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences, 108(12):5127–5132. https://doi.org/10.1073/pnas.1018776108
Könönen, M, Jauhiainen J, Straková P, Heinonsalo J, Laiho R, Kusin K, Limin S, & Vasander H. 2018. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biology and Biochemistry, 123:229-241. https://doi.org/10.1016/j.soilbio.2018.04.028
Kuhn M & Silge J. 2023. Tidy Modelling with R. California (US): O'Reilly Media, Inc. https://www.tmwr.org/
Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel BR, Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C & Hunt T. 2023. Package ‘caret’. Classification and Regression Training. Retrieved from https://cran.r-project.org/web/packages/caret/index.html
Leifeld J & Menichetti L. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9(1):1071 https://doi.org/10.1038/s41467-018-03406-6
Li X, Zhang C, Behrens H & Holtz F. 2020. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 356-357:105371. https://doi.org/10.1016/j.lithos.2020.105371
Lindstromberg S. 2023. The winner's curse and related perils of low statistical power − spelled out and illustrated. Research Methods in Applied Linguistics, 2(3):100059. https://doi.org/10.1016/j.rmal.2023.100059
Lipton ZC. 2018. The mythos of model interpretability. Queue, 16(3):31–57. https://doi.org/10.1145/3236386.3241340
Liu F, Zhang G, Song X, Li D, Zhao Y, Yang J, Wu H, & Yang F. 2020. High-resolution and three-dimensional mapping of soil texture of China. Geoderma, 361:114061. https://doi.org/10.1016/j.geoderma.2019.114061
Liu Z, Lei H, Lei L, & Sheng H. 2022. Spatial prediction of total nitrogen in soil surface layer based on machine learning. Sustainability, 14:11998. https://doi.org/10.3390/su141911998
Lundberg S & Lee S. 2017. A unified approach to interpreting model predictions. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. ArXiv. /abs/1705.07874. https://doi.org/10.48550/arXiv.1705.07874
Lyons MB, Keith DA, Phinn SR, Mason TJ & Elith J. 2018. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208:145-153. https://doi.org/10.1016/j.rse.2018.02.026
Ma Y, Minasny B, McBratney A, Poggio L, & Fajardo M. 2021. Predicting soil properties in 3D: Should depth be a covariate? Geoderma, 383:114794. https://doi.org/10.1016/j.geoderma.2020.114794
McPherron SP, Archer W, Otárola-Castillo ER, Torquato MG & Keevil TL. 2022. Machine learning, bootstrapping, null models, and why we are still not 100% sure which bone surface modifications were made by crocodiles. Journal of Human Evolution, 164:103071. https://doi.org/10.1016/j.jhevol.2021.103071
Maharana K, Mondal S & Nemade B. 2022. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1):91-99. https://doi.org/10.1016/j.gltp.2022.04.020
Marschner P & Rengel Z. 2012. Nutrient Availability in Soils. In Marschner P (Ed.) Marschner’s Mineral Nutrition of Higher Plants (Third Edition), Academic Press. p.315-330. https://doi.org/10.1016/B978-0-12-384905-2.00012-1
Mashaba‐Munghemezulu Z, Chirima GJ, & Munghemezulu C. 2021. Modeling the spatial distribution of soil nitrogen content at smallholder maize farms using machine learning regression and Sentinel‐2 data. Sustainability, 13:11591. https://doi.org/10.3390/su132111591
Mayer M & Stando A. 20203. Package ‘shapviz’. SHAP Visualizations. Retrieved from https://cran.r-project.org/web/packages/shapviz/shapviz.pdf
Melling L, Goh KJ, & Hatano R. 2006. Short-term effect of urea on CH4 flux under the oil palm (Elaeis guineensis) on tropical peatland in Sarawak, Malaysia. Soil Science and Plant Nutrition, 52(6):788–792. https://doi.org/10.1111/j.1747-0765.2006.00092.x
Mesele SA & Ajiboye GA. 2020. Pedo-transfer functions for predicting total soil nitrogen in different land use types under some tropical environments. Ghana Journal of Science, 61 (2):45 – 56. https://dx.doi.org/10.4314/gjs.v61i2.5
Milborrow S. 2023. Package ‘earth’. Multivariate Adaptive Regression Splines. Retrieved from https://cran.rproject.org/web/packages/earth/index.html
Moghaddam DD, Rahmati O, Panahi M, Tiefenbacher J, Darabi H, Haghizadeh A, Haghighi AT, Nalivan OA & Tien Bui D. 2020. The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena, 187:104421. https://doi.org/10.1016/j.catena.2019.104421
Mohidin H, Hanafi MM, Rafii YM, Abdullah SNA, Idris AS, Man S, Idris J, & Sahebi M. 2015. Determination of optimum levels of nitrogen, phosphorus and potassium of oil palm seedlings in solution culture. Bragantia, 74(3):247–254. https://doi.org/10.1590/1678-4499.0408
Molnar C. 2023. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Retrieved from https://christophm.github.io/interpretable-ml-book/
Nash JF. 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1): 48-49. https://doi.org/10.1073/pnas.36.1.48
Noor M, Masganti, Agus F. 2016. Pembentukan dan karakteristik gambut tropika Indonesia. In Agus F, Anda M, Jamil A, Masganti (Eds.). Lahan Gambut Indonesia: Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Badan Penelitian Dan Pengembangan Pertanian. IAARD Press. p.7-15
Olden JD & Jackson DA. 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1-2):135–150. https://doi.org/10.1016/s0304-3800(02)00064-9
Padarian J, McBratney AB & Minasny B. 2020. Game theory interpretation of digital soil mapping convolutional neural networks, SOIL, 6:389–397. https://doi.org/10.5194/soil-6-389-2020
Padarian J, Morris J, Minasny B, & McBratney AB. 2018. Pedotransfer Functions and Soil Inference Systems. In McBratney AB., Minasny B, Stockmann U (Eds.) Progress in Soil Science, Springer Cham. p.195–220. https://doi.org/10.1007/978-3-319-63439-5_7
Padarian J, Minasny B, & McBratney AB. 2020. Machine learning and soil sciences: a review aided by machine learning tools. Soil, 6(1):35–52. https://doi.org/10.5194/soil-6-35-2020
Paleckiene R, Navikaite R, & Slinksiene R. 2021. Peat as a raw material for plant nutrients and humic substances. Sustainability, 13(11):6354. https://doi.org/10.3390/su13116354
Parsaie F, Farrokhian Firouzi A, Mousavi SR, Rahmani A, Sedri MH, & Homaee M. 2021. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment, 193(4):162. https://doi.org/10.1007/s10661-021-08947-w
Pijlman J, Holshof G, van den Berg W, Ros GH, Erisman JW & van Eekeren N. 2020. Soil nitrogen supply of peat grasslands estimated by degree days and soil organic matter content. Nutrient Cycling in Agroecosystems, 117. https://doi.org/10.1007/s10705-020-10071-z
Pulunggono HB. 2019. Nutrient Dynamic on Peatland in Oil Palm Plantation. Dissertation. Bogor (ID): IPB University
Pulunggono HB, Anwar S, Mulyanto B, Sabiham S. 2016. Dynamics and distribution of peat water macro nutrients (N, P, K, Ca, Mg and S) in oil palm plantation based on season, peat thickness, chanel distance and plant age. 15th International Peat Congress, Kuching, Malaysia 2016. A-263, International Peat Society. pp.58-61
Pulunggono HB, Zulfajrin M, Hartono A. 2020. Selected chemical peat properties distribution in palm oil plantation and its relationship with depth layer and distance from mineral soil derived from ultrabasic rocks. Journal of Soil Science and Environment, 22(1): 22-28. https://doi.org/10.29244/jitl.22.1.22-28
Pulunggono HB, Zulfajrin M, Irsan F. 2021. Distribution of nickel (Ni) in peatland situated alongside mineral soil derived from ultrabasic rocks. SAINS TANAH – Journal of Soil Science and Agroclimatology, 18(1):15-26. https://dx.doi.org/10.20961/stjssa.v18i1.45417
Pulunggono HB, Madani YA, Zulfajrin M, & Yusrizal. 2022a. Identifying the underlying factors and variables governing macronutrients in cultivated tropical peatland using regression tree approach. CELEBES Agricultural, 3(1):43–61. https://doi.org/10.52045/jca.v3i1.353
Pulunggono HB, Nurazizah LL, Anwar S, Sabiham S. 2022b. Assessing the distribution of total Fe, Cu, and Zn in tropical peat at an oil palm plantation and their relationship with several environmental factors. Journal of Degraded and Mining Lands Management, 9(2): 3349-3358. https://doi.org/10.15243/jdmlm.2022.092.3349
Pulunggono HB, Kartika VW, Nadalia D, Nurazizah LL, Zulfajrin M. 2022c. Evaluating the changes of Ultisol chemical properties and fertility characteristics due to animal manure amelioration. Journal of Degraded and Mining Lands Management, 9(3):3545-3560. https://doi.org/10.15243/jdmlm.2022.093.3545
Pulunggono HB, Hanifah N, Nadalia D, Zulfajrin M, Nurazizah LL, Mubarok H, Tambusai N, Anwar S, Sabiham S. 2022d. Declined peat heterotrophic respiration as consequences from zeolite amendment simulation: coupling descriptive and predictive modelling approaches. Journal of Degraded and Mining Lands Management, 10(1):3889-3904. https://doi.org/10.15243/jdmlm.2022.101.3889
Pulunggono HB, Fitriana S, Nadalia D, Zulfajrin M, Nurazizah LL, Mubarok H, Tambusai N, Anwar S, Sabiham S. 2022e. Simulating and modeling CO2 flux emitted from decomposed oil palm root cultivated at tropical peatland as affected by water content and residence time. Journal of Degraded and Mining Lands Management, 9(4):3663-3676. https://doi.org/10.15243/jdmlm.2022.094.3663
Pulunggono HB, Siswanto, Mubarok H, Widiastuti H, Tambusai N, Zulfajrin M, Anwar S, Taniwiryono D, Sumawinata B & Sabiham. S. 2022. Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation. Journal of Degraded and Mining Lands Management, 9(2): 3247-3263, https://doi.org/10.15243/jdmlm.2022.092.3247
Quinlan R. 1992. Learning with Continuous Classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pp.343-348.
Quinlan R. 1993. Combining Instance-Based and Model-Based Learning. Proceedings of the Tenth International Conference on Machine Learning, pp.236-243.
Rajput D, Wang WJ & Chen CC. 2023. Evaluation of a decided sample size in machine learning applications. BMC Bioinformatics 24(48):1-17. https://doi.org/10.1186/s12859-023-05156-9
Rasmusen E. 1989. Games and information: An introduction to game theory. Oxford (UK): Blackwell
Ribeiro K, Pacheco FS, Ferreira JW, Sousa‐Neto ER, Hastie A, Krieger Filho GC, Alvalá PC, Forti MC, & Ometto JP. 2020. Tropical peatlands and their contribution to the global carbon cycle and climate change. Global Change Biology, 27(3):489–505. https://doi.org/10.1111/gcb.15408
Ribeiro MT, Singh S & Guestrin C. 2016. Model-agnostic interpretability of machine learning. 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NYArXiv. /abs/1606.05386. https://doi.org/10.48550/arXiv.1606.05386
Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F & Dormann CF. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8):913-929. https://doi.org/10.1111/ecog.02881
Rossiter DG. 2018. Past, present & future of information technology in pedometrics. Geoderma, 324:131-137. https://doi.org/10.1016/j.geoderma.2018.03.009
Rückauf U, Augustin J, Russow R & Merbach W. 2004. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biology and Biochemistry, 36(1):77-90. https://doi.org/10.1016/j.soilbio.2003.08.021
Sakhaee A, Gebauer A, Ließ M, & Don A. 2022. Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms, soil, 8:587–604. https://doi.org/10.5194/soil-8-587-2022
Sangok FE, Maie N, Melling L & Watanabe A. 2017. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Science of The Total Environment, 587-588: 381–388. https://doi.org/10.1016/j.scitotenv.2017.02.165
Sarkar SK, Rudra RR, Nur MS & Das PC. 2023. Partial least-squares regression for soil salinity mapping in Bangladesh. Ecological Indicators, 154:110825. https://doi.org/10.1016/j.ecolind.2023.110825
Scharlemann JP, Tanner EV, Hiederer R, & Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1):81–91. https://doi.org/10.4155/cmt.13.77
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. 2023. Package ‘Ggally’. Extension to ‘ggplot2. Retrieved from https://cran.r-project.org/web/packages/GGally/GGally.pdf
Shapley LS. 1953. A Value for n-Person Games, Vol II of Contributions to the Theory of Games. Princeton (US): Princeton University Press
Shi S, Hou M, Gu Z, Jiang C, Zhang W, Hou M, Li C, & Xi Z. 2022. Estimation of heavy metal content in soil based on machine learning models. Land, 11:1037. https://doi.org/10.3390/land11071037
Shi Y, Zhang X, Wang Z, Xu Z, He C, Sheng L, Liu H, & Wang Z. 2021. Shift in nitrogen transformation in peatland soil by nitrogen inputs. Science of The Total Environment, 764:142924. https://doi.org/10.1016/j.scitotenv.2020.142924
Sihag P, Keshavarzi A, & Kumar V. 2019. Comparison of different approaches for modeling of heavy metal estimations. SN Applied Sciences, 1(7):780. https://doi.org/10.1007/s42452-019-0816-6
Soil Survey Staff. 2014. Key to Soil Taxonomy. Twelfth Edition. Washington DC (US): Natural Resources Conservation Services, United States Department of Agriculture.
Song X, Rossiter DG, Liu F, Wu H, Zhao X, Cao Q, & Zhang G. 2020. Can pedotransfer functions based on environmental variables improve soil total nutrient mapping at a regional scale?. Soil and Tillage Research, 202:104672. https://doi.org/10.1016/j.still.2020.104672
Štrumbelj E & Kononenko I. 2013. Explaining prediction models and individual predictions with feature contributions. Knowledge and Information Systems, 41(3): 647–665. https://doi.org/10.1007/s10115-013-0679-x
Subardja D, Ritung S, Anda M, Sukarman, Suryani E, & Subandiono RE. 2014. Petunjuk Teknis Klasifikasi Tanah Nasional. Bogor (ID):Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian.
Sui Q-R, Chen Q-H, Wang D-D. Tao Z-G. 2023. Application of machine learning to the Vs-based soil liquefaction potential assessment. Journal of Mountain Science, 20:2197–2213. https://doi.org/10.1007/s11629-022-7809-4
Tang L, Schucany W, Woodward W & Gunst R. 2006. A parametric spatial bootstrap. Technical Report SMU-TR-337. Dallas, Southern Methodist University
Tran VQ. 2022. Predicting and investigating the permeability coefficient of soil with aided single machine learning algorithm. Complexity, 8089428. https://doi.org/10.1155/2022/8089428
Trontelj ml. J & Chambers O. 2021. Machine learning strategy for soil nutrients prediction using spectroscopic method. Sensors, 2:4208. https://doi.org/10.3390/s21124208
von Uexküll HR & Fairhurst TH. 1999. Some nutritional disorders in oil palm. Better Crops International, 13(1):16-21.
Wadoux C. 2023. Interpretable spectroscopic modelling of soil with machine learning. European Journal of Soil Science, 74(3):e13370. https://doi.org/10.1111/ejss.13370
Wadoux AMJ-C, Román‐Dobarco M, & McBratney AB. 2020a. Perspectives on data‐driven soil research. European Journal of Soil Science, 72(4):1675–1689. https://doi.org/10.1111/ejss.13071
Wadoux AMJ-C, Minasny B, & McBratney AB. 2020b. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210:103359. https://doi.org/10.1016/j.earscirev.2020.103359
Wadoux AMJ-C & Molnar C. 2022. Beyond prediction: methods for interpreting complex models of soil variation. Geoderma, 422:115953. https://doi.org/10.1016/j.geoderma.2022.115953
Wadoux AMJ-C, Odeh IO, & McBratney AB. 2021. Overview of Pedometrics. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-822974-3.00001-X
Wadoux C, Samuel-Rosa A, Poggio L & Mulder VL. 2020c. A note on knowledge discovery and machine learning in digital soil mapping. European Journal of Soil Science, 71(2):133-136. https://doi.org/10.1111/ejss.12909
Warren M, Hergoualc’h K, Kauffman JB, Murdiyarso D, & Kolka R. 2017. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 12(1):12. https://doi.org/10.1186/s13021-017-0080-2
Wen L & Hughes M. 2020. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sensing, 12(10):1683. https://doi.org/10.3390/rs12101683
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K & Yutani H. 2019. Welcome to the tidyverse. Journal of Open Source Software, 4(43): 1686. https://doi.org/10.21105/joss.01686
Wright MN, Wager S & Probst P. 2023. Package ‘ranger’. A Fast Implementation of Random Forests. Retrieved from https://cran.rproject.org/web/packages/ranger/index.html
Xu Y & Goodacre R. 2018. On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing. 2:249–262. https://doi.org/10.1007/s41664-018-0068-2
Xu S, Wang M, Shi X, Yu Q, & Zhang Z. 2021. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Science of The Total Environment, 754:142135. https://doi.org/10.1016/j.scitotenv.2020.142135
Xu S, Zhao Y, Wang M & Shi X. 2018. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma, 310:29-43. https://doi.org/10.1016/j.geoderma.2017.09.013
Young GA. 1994. Bootstrap: More than a stab in the dark? Statistical Science. 9(3): 382-395. https://doi.org/10.1214/ss/1177010383
Yu Z, Loisel J, Brosseau DP, Beilman DW, & Hunt SJ. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13):L13402. https://doi.org/10.1029/2010gl043584
Zhao SL, Gupta SC, Huggins DR & Moncrief JF. 2001. Tillage and nutrient source effects on surface and subsurface water quality at corn planting. Journal of Environmental Quality, 30(3):998-1008. https://doi.org/10.2134/jeq2001.303998x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Heru Bagus Pulunggono
This work is licensed under a Creative Commons Attribution 4.0 International License.