Monitoring and Visualizing the Impact of the Lapindo Mudflow Disaster Using Earth Engine Apps Platform based on Cloud Computing

https://doi.org/10.52045/jca.v4i2.703

Authors

  • Ali Dzulfigar IPB Sustainable Science Research Student Association, IPB University, Bogor Regency 16680, Indonesia
  • Muhammad Ikhwan Ramadhan IPB Sustainable Science Research Student Association, IPB University, Bogor Regency 16680, Indonesia
  • Azzahra Pascawisudawati IPB Sustainable Science Research Student Association, IPB University, Bogor Regency 16680, Indonesia
  • Rahmat Asy'Ari IPB Sustainable Science Research Student Association, IPB University, Bogor Regency 16680, Indonesia
  • Yudi Setiawan Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment IPB University, IPB
  • Rahmat Pramulya Center for Low Carbon Development, University of Teuku Umar, Aceh, Indonesia

Keywords:

disaster, landsat, remote sensing

Abstract

The Lapindo mudflow disaster at the PT Lapindo Brantas drilling site in Ronokenongo Village, Porong District, Sidoarjo Regency, East Java caused the loss of agricultural and residential areas. The research aimed to detect the areas that are affected by Lapindo mudflow 2006-2022 using Landsat 7 ETM and Landsat 8 OLI-TIRS imageries, as well as visualize their impact using the cloud computing-based Google Earth Engine/GEE platform. Spatiotemporal data analysis was performed on the GEE platform using random forest machine learning as algorithm for supervised land use classification, while visualization was carried out through Earth Engine Apps. The results showed an increase in the mudflow-affected area from 2006 (204.57 ha) to 2012 (542.32 ha) with northeast direction, whereas the increase was insignificant at the following years. Within the detection period, agricultural land was the most affected area, followed by residential areas and bare land. The area ordering was similar during all detected years. The increasing size of the affected area can potentially have both direct and indirect impacts on the surrounding area. Therefore, special action is needed for the surrounding area, such as relocating settlements to safer areas against the Lapindo mudflow disaster.

Downloads

Download data is not yet available.

References

Adiri Z, Lhissou R, El Harti A, Jellouli A & Chakouri M. 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews. 117: 103-332. https://doi.org/10.1016/j.oregeorev.2020.103332

Allen RG, Morton C, Kamble B, Kilic A, Huntington J, Thau D & Robison C. 2015. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr.). American Society of Agricultural and Biological Engineers. 1: 1-11. https://doi.org/10.13031/irrig.20152143511

Asy'Ari R, Ranti A, Rahmawati AD, Zulfajrin M, Nurazizah LL, Putra MCA, Sudrajat A. 2023. High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing. Celebes Agricultural. 3(2): 82–99. https://doi.org/10.52045/jca.v3i2.381

Dewantara AW. 2013. Merefleksikan hubungan antara etika Aristotelian dan bisnis dengan studi kasus lumpur lapindo. Arete, 2(1):23-40. https://doi.org/10.33508/arete.v2i1.663

Ekawati, J. 2018. Kebertahanan Kultural dan Religi di Area Permukiman Terdampak Bencana Lumpur Lapindo Sidoarjo, Jawa Timur. Sabda: Jurnal Kajian Kebudayaan. 13(2):122-134. https://doi.org/10.14710/sabda.13.2.122-134

Gómez C, White JC & Wulder MA. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of photogrammetry and Remote Sensing. 116:55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D & Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

Intakhiya DM, Santoso UP & Mutiarin D. 2021. Strategi dalam penanganan kasus lumpur lapindo pada masyarakat terdampak lumpur lapindo Porong-Sidoarjo, Jawa Timur. Jurnal Ilmiah Ilmu Pemerintahan. 7(3):565-585.

Jog S & Dixit M. 2016. Supervised classification of satellite images. Conference on Advances in Signal Processing (CASP). 2016: 93-98. https://doi.org/10.1109/CASP.2016.7746144

Klemas V. 2015. Remote sensing of floods and flood-prone areas: An overview. Journal of Coastal Research. 31(4):1005-1013. https://doi.org/10.2112/JCOASTRES-D-14-00160.1

Kumar L & Mutanga O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote sensing. 10(10):1-15. https://doi.org/10.3390/rs10101509

Madinu AM, Jouhary NA, Ulfa A, Rahmadhanti IN, Pudjawati NH, Asy’Ari R, Zamani NP, Pramulya R & Setiawan, Y. 2024. Monitoring of coastal dynamics at Subang Regency using Landsat Collection Data and Cloud Computing Based. BIO Web of Conferences. 106: 1-18, https://doi.org/10.1051/bioconf/202410604005

Mhawej M & Faour G. 2020. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environmental Modelling & Software. 133: 1-9. https://doi.org/10.1016/j.envsoft.2020.104845

Mutanga O & Kumar L. 2019. Google earth engine applications. Remote sensing. 11(5):1-4. https://doi.org/10.3390/rs10101509

Rembold F, Meroni M, Urbano F, Royer A, Atzberger C, Lemoine G & Haesen D. 2015. Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples. Frontiers in Environmental Science. 3(46):1-11. https://doi.org/10.3389/fenvs.2015.00046

Rivai, FA, Asy’Ari R, Fadhil MH, Jouhary, NA, Saenal N, Ardan F, Pohan A, Pramulya R, & Setiawan, Y. 2023. Analysis of Land Use Land Cover Changes using Random Forest through Google Earth Engine in Depok City, Indonesia. SSRS Journal B: Spatial Research. 1:1-12

Rwanga SS & Ndambuki JM. 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences. 8(04):611-622. https://doi.org/10.4236/ijg.2017.84033

Scheip CM & Wegmann KW. 2021. HazMapper: a global open-source natural hazard mapping application in Google Earth Engine. Natural Hazards and Earth System Sciences. 21(5), 1495-1511. https://doi.org/10.5194/nhess-21-1495-2021

Singh S, Singh H, Sharma V, Shrivastava V, Kumar P, Kanga S, Singh S K. 2021. Impact of forest fires on air quality in Wolgan Valley, New South Wales, Australia—A mapping and monitoring study using Google Earth Engine. Forests. 13(1): 2-17. https://doi.org/10.3390/f13010004

Suryaningsih A & Handayani BL. 2017. Bertahan Hidup Dalam Kubangan Lumpur (Studi tentang Korban Lumpur Lapindo di Desa Glagaharum Kecamatan Porong Sidoarjo). Electronical Journal of Social and Political Sciences (E-SOSPOL). 4(1):6-11

Wang Q, Zhao L, Wang M, Wu J, Zhou W, Zhang Q & Deng M. 2022. A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data. Remote Sensing. 14(19):1-16. https://doi.org/10.3390/rs14194981

Zhang C, Di L, Yang Z, Lin L & Hao P. 2020. AgKit4EE: A toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine. Environmental Modelling & Software. 129: 1-34, https://doi.org/10.1016/j.envsoft.2020.104694

Zhou J, Jia L, Menenti M & Gorte B. 2016. On the performance of remote sensing time series reconstruction methods–A spatial comparison. Remote Sensing of Environment. 187:367-384. https://doi.org/10.1016/j.rse.2016.10.025

Zhu W, Jiang H, Zhou S & Addison M. 2017. The review of prospect of remote sensing image processing. Recent Patents on Computer Science. 10(1):53-6. https://doi.org/10.2174/2213275909666160616115416

Downloads

Published

2024-12-22

How to Cite

Dzulfigar, A., Ramadhan, M. I., Pascawisudawati, A., Asy’Ari, R., Setiawan, Y., & Pramulya, R. (2024). Monitoring and Visualizing the Impact of the Lapindo Mudflow Disaster Using Earth Engine Apps Platform based on Cloud Computing. CELEBES Agricultural, 4(2), 79–87. https://doi.org/10.52045/jca.v4i2.703

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)