Monitoring and Visualizing the Impact of the Lapindo Mudflow Disaster Using Earth Engine Apps Platform based on Cloud Computing
https://doi.org/10.52045/jca.v4i2.703
Keywords:
disaster, landsat, remote sensingAbstract
The Lapindo mudflow disaster at the PT Lapindo Brantas drilling site in Ronokenongo Village, Porong District, Sidoarjo Regency, East Java caused the loss of agricultural and residential areas. The research aimed to detect the areas that are affected by Lapindo mudflow 2006-2022 using Landsat 7 ETM and Landsat 8 OLI-TIRS imageries, as well as visualize their impact using the cloud computing-based Google Earth Engine/GEE platform. Spatiotemporal data analysis was performed on the GEE platform using random forest machine learning as algorithm for supervised land use classification, while visualization was carried out through Earth Engine Apps. The results showed an increase in the mudflow-affected area from 2006 (204.57 ha) to 2012 (542.32 ha) with northeast direction, whereas the increase was insignificant at the following years. Within the detection period, agricultural land was the most affected area, followed by residential areas and bare land. The area ordering was similar during all detected years. The increasing size of the affected area can potentially have both direct and indirect impacts on the surrounding area. Therefore, special action is needed for the surrounding area, such as relocating settlements to safer areas against the Lapindo mudflow disaster.
Downloads
References
Adiri Z, Lhissou R, El Harti A, Jellouli A & Chakouri M. 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews. 117: 103-332. https://doi.org/10.1016/j.oregeorev.2020.103332
Allen RG, Morton C, Kamble B, Kilic A, Huntington J, Thau D & Robison C. 2015. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr.). American Society of Agricultural and Biological Engineers. 1: 1-11. https://doi.org/10.13031/irrig.20152143511
Asy'Ari R, Ranti A, Rahmawati AD, Zulfajrin M, Nurazizah LL, Putra MCA, Sudrajat A. 2023. High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing. Celebes Agricultural. 3(2): 82–99. https://doi.org/10.52045/jca.v3i2.381
Dewantara AW. 2013. Merefleksikan hubungan antara etika Aristotelian dan bisnis dengan studi kasus lumpur lapindo. Arete, 2(1):23-40. https://doi.org/10.33508/arete.v2i1.663
Ekawati, J. 2018. Kebertahanan Kultural dan Religi di Area Permukiman Terdampak Bencana Lumpur Lapindo Sidoarjo, Jawa Timur. Sabda: Jurnal Kajian Kebudayaan. 13(2):122-134. https://doi.org/10.14710/sabda.13.2.122-134
Gómez C, White JC & Wulder MA. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of photogrammetry and Remote Sensing. 116:55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D & Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031
Intakhiya DM, Santoso UP & Mutiarin D. 2021. Strategi dalam penanganan kasus lumpur lapindo pada masyarakat terdampak lumpur lapindo Porong-Sidoarjo, Jawa Timur. Jurnal Ilmiah Ilmu Pemerintahan. 7(3):565-585.
Jog S & Dixit M. 2016. Supervised classification of satellite images. Conference on Advances in Signal Processing (CASP). 2016: 93-98. https://doi.org/10.1109/CASP.2016.7746144
Klemas V. 2015. Remote sensing of floods and flood-prone areas: An overview. Journal of Coastal Research. 31(4):1005-1013. https://doi.org/10.2112/JCOASTRES-D-14-00160.1
Kumar L & Mutanga O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote sensing. 10(10):1-15. https://doi.org/10.3390/rs10101509
Madinu AM, Jouhary NA, Ulfa A, Rahmadhanti IN, Pudjawati NH, Asy’Ari R, Zamani NP, Pramulya R & Setiawan, Y. 2024. Monitoring of coastal dynamics at Subang Regency using Landsat Collection Data and Cloud Computing Based. BIO Web of Conferences. 106: 1-18, https://doi.org/10.1051/bioconf/202410604005
Mhawej M & Faour G. 2020. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environmental Modelling & Software. 133: 1-9. https://doi.org/10.1016/j.envsoft.2020.104845
Mutanga O & Kumar L. 2019. Google earth engine applications. Remote sensing. 11(5):1-4. https://doi.org/10.3390/rs10101509
Rembold F, Meroni M, Urbano F, Royer A, Atzberger C, Lemoine G & Haesen D. 2015. Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples. Frontiers in Environmental Science. 3(46):1-11. https://doi.org/10.3389/fenvs.2015.00046
Rivai, FA, Asy’Ari R, Fadhil MH, Jouhary, NA, Saenal N, Ardan F, Pohan A, Pramulya R, & Setiawan, Y. 2023. Analysis of Land Use Land Cover Changes using Random Forest through Google Earth Engine in Depok City, Indonesia. SSRS Journal B: Spatial Research. 1:1-12
Rwanga SS & Ndambuki JM. 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences. 8(04):611-622. https://doi.org/10.4236/ijg.2017.84033
Scheip CM & Wegmann KW. 2021. HazMapper: a global open-source natural hazard mapping application in Google Earth Engine. Natural Hazards and Earth System Sciences. 21(5), 1495-1511. https://doi.org/10.5194/nhess-21-1495-2021
Singh S, Singh H, Sharma V, Shrivastava V, Kumar P, Kanga S, Singh S K. 2021. Impact of forest fires on air quality in Wolgan Valley, New South Wales, Australia—A mapping and monitoring study using Google Earth Engine. Forests. 13(1): 2-17. https://doi.org/10.3390/f13010004
Suryaningsih A & Handayani BL. 2017. Bertahan Hidup Dalam Kubangan Lumpur (Studi tentang Korban Lumpur Lapindo di Desa Glagaharum Kecamatan Porong Sidoarjo). Electronical Journal of Social and Political Sciences (E-SOSPOL). 4(1):6-11
Wang Q, Zhao L, Wang M, Wu J, Zhou W, Zhang Q & Deng M. 2022. A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data. Remote Sensing. 14(19):1-16. https://doi.org/10.3390/rs14194981
Zhang C, Di L, Yang Z, Lin L & Hao P. 2020. AgKit4EE: A toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine. Environmental Modelling & Software. 129: 1-34, https://doi.org/10.1016/j.envsoft.2020.104694
Zhou J, Jia L, Menenti M & Gorte B. 2016. On the performance of remote sensing time series reconstruction methods–A spatial comparison. Remote Sensing of Environment. 187:367-384. https://doi.org/10.1016/j.rse.2016.10.025
Zhu W, Jiang H, Zhou S & Addison M. 2017. The review of prospect of remote sensing image processing. Recent Patents on Computer Science. 10(1):53-6. https://doi.org/10.2174/2213275909666160616115416
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ali Dzulfigar, Muhammad Ikhwan Ramadhan, Azzahra Pascawisudawati, Rahmat Asy'Ari, Yudi Setiawan, Rahmat Pramulya
This work is licensed under a Creative Commons Attribution 4.0 International License.