Vegetation-Water-Built Up Index Combined: Algorithm Indices Combination for Characterization and distribution of Mangrove Forest through Google Earth Engine

The spatial characteristics of Jakarta's urban mangroves

https://doi.org/10.52045/jca.v3i1.298

Authors

  • Azelia Dwi Rahmawati Undergraduate Student, Department of Forest Management, Faculty of Forestry and Environment, IPB University, Bogor, 16680, West Java, Indonesia
  • Rahmat Asy’Ari Undergraduate Student, Department of Forest Management, Faculty of Forestry and Environment, IPB University, Bogor, 16680, West Java, Indonesia
  • Muhammad Aqbal Fathonah Undergraduate Student, Department of Forest Management, Faculty of Forestry and Environment, IPB University, Bogor, 16680, West Java, Indonesia
  • Priyanto Department of Forest Management, Faculty of Forestry and Environment, IPB University, Bogor, 16680, West Java, Indonesia
  • Neviaty Putri Zamani Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University
  • Rahmat Pramulya Faculty of Agriculture, University of Teuku Umar, Meulaboh, 23681, Aceh, Indonesia
  • Yudi Setiawan Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Bogor, 16680, West Java, Indonesia

Keywords:

Index , Machine learning, Mangrove Forest, Random Forest, Sentinel-2 MSI

Abstract

Mangroves that live in ecotone areas have a fairly significant role in the economy and ecology. This strategic role requires spatial data to facilitate the management and development of mangrove areas. The mangrove mapping process usually uses a manual method, namely through software, and has shortcomings and limitations in image management that require massive data storage. Cloud computing-based Google Earth Engine (GEE) mapping platform can manage images with an extensive scope and spatiotemporal data processing. However, this platform requires index formulas or combinations to help classify and increase accuracy in mapping the earth’s surface. The innovation with the combined VWB-IC (Vegetation-Water-Built-up Index Combined) formula is projected to classify the characteristics of mangrove areas in Jakarta Bay. The combination consists of three types of indices, namely vegetation index (NDVI, GNDVI, ARVI, EVI, SLAVI, and SAVI), water (NDWI, MNDWI, and LSWI), and buildings (IBI and NDBI). This combination is used to translate the classification of mangroves using the Random Forest (RF) machine learning algorithm method with the Sentinel-2 MSI (Multispectral Instrument) satellite image source and through the GEE platform. This platform generates raster data for land use classification (including mangroves), and then the analysis is continued using ArcMap software. The obtained mangrove area is 220.43 ha, located in Jakarta Bay and divided into the Angke Kapuk Nature Tourism Park and the Pantai Indah Kapuk Mangrove Ecotourism Area. The data from this research is expected to provide a recommendation for a combination index formula for mapping mangrove areas in urban areas. The spatial distribution area can be used as an evaluation material in mangrove areas in Jakarta Bay

Downloads

Download data is not yet available.

References

Alongi DM. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3): 331-349. https://doi.org/10.1017/S0376892902000231

Baihaqi A, Setia TM, Sugardjito J & Lorenzo G. 2017. The use of natural roosting trees by long-tailed macaques (Macaca fascicularis) in hutan lindung Angke Kapuk and ekowisata mangrove pantai indah kapuk Jakarta. Al-Kauniyah, 10(1): 35-41. https://doi.org/10.15408/kauniyah.v10i1.4910

Bazzi H, Baghdadi N, Hajj El, M, Zrib, M, Minh DHT, Ndikumana E, Courault, D & Belhouchette H. 2019. Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France. Remote sensing, 11(7): 887. https://doi.org/10.3390/rs11070887

Berberoglu S & Akin A. 2009. Assessing different remote sensing techniques to detect land use/cover changes in the Eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1): 46-53. https://doi.org/10.1016/j.jag.2008.06.002

Berlanga-Robles CA & Ruiz-Luna A. 2020. Assessing seasonal and long-term mangrove canopy variations in Sinaloa, northwest Mexico, based on time series of enhanced vegetation index (EVI) data. Wetlands Ecology and Management, 28(2): 229-249. https://doi.org/10.1007/s11273-020-09709-0

Bibin M & Ardian A. 2020. Pengembangan potensi wisata mangrove melalui kegiatan penanaman mangrove di Kawasan Pesisir Suppa. Jurnal Pemberdayaan Pariwisata, 2(1): 36.

Bowman HHM. 1917. Ecology and Physiology of The Red Mangrove. Pennsylvania(US): University of Pennsylvania.

Breiman L. 2001. Random forests. Machine learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324

Chamberlain DA, Phinn SR & Possingham HP. 2021. Mangrove forest cover and phenology with Landsat dense time series in Central Queensland, Australia. Remote Sensing, 13(15): 3032. https://doi.org/10.3390/rs13153032

Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z & Sun R. 2017. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 104- 120. https://doi.org/10.1016/j.isprsjprs.2017.07.011

Conchedda G, Durieux L & Mayaux P. 2008. An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5): 578-589. https://doi.org/10.1016/j.isprsjprs.2008.04.002

Curran PJ, Dungan JL & Gholz, HL. 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7(1- 2-3-4): 33-48. https://doi.org/10.1093/treephys/7.1-2-3-4.33

Dennison PE, Roberts DA, Peterson SH & Rechel J. 2005. Use of normalized difference water index for monitoring live fuel moisture. International Journal of Remote Sensing, 26(5): 1035-1042. https://doi.org/10.1080/0143116042000273998

Díaz BM & Blackburn GA. 2003. Remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. International Journal of Remote Sensing, 24(1): 53-73. https://doi.org/10.1080/01431160305012

Drusch MUD, Bello S, Carlier O, Colin V, Fernandez F, Gascon B, Hoersch C, Isola P, Laberinti P, Martimort A, Meygret F, Spoto O, Sy F, Marchese P & Bargellini. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120: 25–36. https://doi.org/10.1016/j.rse.2011.11.026

Dsikowitzky L, Ferse SC, Schwarzbauer J, Vogt TS & Irianto HE. 2016. Impacts of megacities on tropical coastal ecosystems—The case of Jakarta, Indonesia. Marine Pollution Bulletin, 110(2): 621-623. http://dx.doi.org/10.1016/j.marpolbul.2015.11.060

Dsikowitzky L, Dama A, Ferse SCA, Irianto HE, Jennerjahn TC, Lukas MC, Nordhaus I, Pohlmann T, Schwarzbauer J, Sugama K & Sumiono B. 2019. Java Island, Indonesia. in C. Sheppard (ed). World Seas: An Environmental Evaluation, Volume II: the Indian Ocean to the Pacific. Amsterdam, Netherlands: Elsevier.

Fitzgerald RW & Lees BG. 1994. Assessing the classification accuracy of multisource remote sensing data. Remote Sensing of Environment, 47(3): 362-368. https://doi.org/10.1016/0034-4257(94)90103-1

Flores-Cárdenas F, Millán-Aguilar O, Díaz-Lara L, Rodríguez-Arredondo L, Hurtado-Oliva MÁ & Manzano-Sarabia M. 2018. Trends in the normalized difference vegetation index for mangrove areas in northwestern Mexico. Journal of Coastal Research, 34(4): 877-882. https://doi.org/10.2112/JCOASTRES-D-17-00022.1

Ghorbanian, A, Zaghian S, Asiyabi RM, Amani M, Mohammadzadeh A & Jamali S. 2021. Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine. Remote Sensing, 13(13): 2565. https://doi.org/10.3390/rs13132565

Ghosh SM, Behera MD & Paramanik S. 2020. Canopy height estimation using sentinel series images through machine learning models in a mangrove forest. Remote Sensing, 12(9): 1519. https://doi.org/10.3390/rs12091519

Giardino C, Brando VE, Gege P, Pinnel N, Hochberg E, Knaeps E, Reusen I, Doerffer R, Bresciani M, Braga F & Foerster S. 2019. Imaging spectrometry of inland and coastal waters: state of the art, achievements and perspectives. Surveys in Geophysics, 40(3): 401-429. https://doi.org/10.1007/s10712-018-9476-0

Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S & Kelmelis JA. 2008. Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. Journal of Biogeography, 35(3): 519-528. https://doi.org/10.1111/j.1365-2699.2007.01806.x

Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3): 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7

Goldberg L, Lagomasino D, Thomas N & Fatoyinbo T. 2020. Global declines in human‐driven mangrove loss. Global Change Biology, 26(10): 5844-5855.

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D & Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031

Guo M, Yu Z, Xu Y, Huang Y & Li C. 2021. ME-Net: A deep convolutional neural network for extracting mangrove using sentinel-2A data. Remote Sensing, 13(7): 1292. https://doi.org/10.3390/rs13071292

Hu S & Wang L. 2013. Automated urban land-use classification with remote sensing. International Journal of Remote Sensing, 34(3):790-803. https://doi.org/10.1080/01431161.2012.714510

Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Huete A, Didan K, Miura T, Rodriguez EP, Gao X & Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Huxham M, Dencer-Brown A, Diele K, Kathiresan K, Nagelkerken I & Wanjiru C. 2017. Mangroves and people: local ecosystem services in a changing climate. In Rivera-Monroy V.H, Lee SY, Kristensen E & Twilley RR. (Eds), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services. Springer Cham p.113-162. https://doi.org/10.1007/978-3-319-62206-4_8

Jackson RD & Huete AR. 1991. Interpreting vegetation indices. Preventive Veterinary Medicine, 11(3-4): 185-200. https://doi.org/10.1016/S0167-5877(05)80004-2

Jensen JR, Lin H, Yang X, Ramsey III E, Davis BA & Thoemke CW. 1991. The measurement of mangrove characteristics in Southwest Florida using SPOT multispectral data. Geocarto International, 6(2): 13-21. https://doi.org/10.1080/10106049109354302

Jia M, Wang Z, Wang C, Mao D & Zhang Y. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sensing, 11(17): 2043. https://doi.org/10.3390/rs11172043

Kamal M, Phinn S & Johansen K. 2014. Characterizing the spatial structure of mangrove features for optimizing image-based mangrove mapping. Remote Sensing, 6(2): 984-1006. https://doi.org/10.3390/rs6020984

Kaufman YJ & Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote sensing, 30(2): 261-270.

Kumar L & Mutanga O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10): 1509. https://doi.org/10.3390/rs10101509

Lee SY, Primavera JH, Dahdouh‐Guebas F, McKee K, Bosire JO, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C & Mendelssohn I. 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography. 23(7): 726-743. https://doi.org/10.1111/geb.12155

Lewis HG & Brown M. 2001. A generalized confusion matrix for assessing area estimates from remotely sensed data. International Journal of Remote Sensing, 22(16): 3223-3235. https://doi.org/10.1080/01431160152558332

Liu M, Zhang H, Lin G, Lin H & Tang, D. 2018. Zonation and directional dynamics of mangrove forests derived from time-series satellite imagery in Mai Po, Hong Kong. Sustainability, 10(6): 1913. https://doi.org/10.3390/su10061913

Liu X, Fatoyinbo TE, Thomas NM, Guan WW, Zhan Y, Mondal P, Lagomasino D, Simard M, Trettin CC, Deo R & Barenblitt A. 2021. Large-scale high-resolution coastal mangrove forests mapping across West Africa with machine learning ensemble and satellite big data. Frontiers in Earth Science, 8: 677. https://doi.org/10.3389/feart.2020.560933

Lymburner L, Beggs PJ & Jacobson CR. 2000. Estimation of canopy-average surface- specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(2): 183-192.

Maryantika N & Lin C. 2017. Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4(4): 321-332. https://doi.org/10.1016/j.inpa.2017.06.003

Maxwell AE, Warner TA & Fang F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9): 2784-2817. https://doi.org/10.1080/01431161.2018.1433343

Mulyaningsih D, Hendrarto B & Muskan Anfola, MR. 2018. The Changing Mangrove Area at Pantai Indah Kapuk, North Jakarta in 2010 – 2015. Management of Aquatic Resources Journal (MAQUARES), 6(4): 442-448. https://doi.org/10.14710/marj.v6i4.21334

Mutanga O, Kumar L. 2019. Google earth engine applications. Remote Sensing, 11(5): 591. https://doi.org/10.3390/rs11050591

McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432. https://doi.org/10.1080/01431169608948714

Pham TD, Yokoya N, Bui DT, Yoshino K & Friess DA. 2019A. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3): 230. https://doi.org/10.3390/rs11030230

Pham TD, Xia J, Ha NT, Bui DT, Le NN & Tekeuchi W. 2019B. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors. 19(8): 1933. https://doi.org/10.3390/s19081933

Phiri D, Simwanda M, Salekin S, Nyirenda VR, Murayama Y & Ranagalage M. 2020. Sentinel-2 data for land cover/use mapping: a review. Remote Sensing. 12(14): 2291. https://doi.org/10.3390/rs12142291

Putra AC. 2014. Strategi pengembangan ekowisata melalui kajian ekosistem mangrove di Pulau Pramuka Kepulauan Seribu. [Doctoral Theses]. Semarang: Universitas Diponegoro.

Qi Y. 2012. Random forest for bioinformatics. In Zhang C & Ma Y (Eds.). Ensemble Machine Learning. Boston (US): Springer. p.307- 323. https://doi.org/10.1007/978-1-4419-9326-7_11

Ramdani F, Rahman S & Giri C. 2018. Principal polar spectral indices for mapping mangroves forest in South East Asia: study case Indonesia. International Journal of Digital Earth, 12(10): 1-16. https://doi.org/10.1080/17538947.2018.1454516

Rees G & Rees WG. 1999. The Remote sensing Data Book. England: Cambridge University Press.

Reis-Filho JA, Giarrizzo T & Barros F. 2016. Tidal migration and cross-habitat movements of fish assemblage within a mangrove ecotone. Marine Biology, 163(5): 111. https://doi.org/10.1007/s00227-016-2885-z

Rouse jr JW, Haas RH, Schell JA & Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication. 351(1974): 309.

Sandilyan S & Kathiresan K. 2012. Mangrove conservation: a global perspective. Biodiversity and Conservation, 21(14): 3523-3542. https://doi.org/10.1007/s10531-012-0388-x

Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P & Homayouni S. 2020. Support vector machine vs. random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 6309-6325. http://dx.doi.org/10.21776/ub.jfmr.2019.003.02.19

Slamet NS, Dargusch P, Aziz AA & Wadley D. 2020. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean & Coastal Management, 195: 105283. https://doi.org/10.1016/j.ocecoaman.2020.105283

Story M & Congalton RG. 1986. Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3): 397-399.

Sukwika T & Putra H. 2018. Analisis sedimentasi dan konsentrasi atmosfer pada zona mangrove di Muaragembong, Bekasi. Journal of Urban Development, 6(2): 186- 195. https://doi.org/10.14710/jpk.6.2.186-195

Terchunian A, Klemas V, Segovia A, Alvarez A, Vasconez B & Guerrero L. 1986. Mangrove mapping in Ecuador: The impact of shrimp pond construction. Environmental Management, 10(3): 345-350.

Thanh Noi P & Kappas M. 2018. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel- 2 imagery. Sensors, 18(1): 18. https://doi.org/10.3390/s18010018

Tolangara A & Ahmad H. 2018. Kerapatan mangrove dan konservasinya di Bacan Kabupaten Halmahera Selatan Provinsi Maluku Utara. Techno: Jurnal Penelitian. 6(02): 25-32. http://dx.doi.org/10.33387/tk.v6i02.566

Twilley RR, Castañeda-Moya E, Rivera-Monroy VH & Rovai A. 2017. Productivity and carbon dynamics in mangrove wetlands. In Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR. (Eds). Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services. Springer. 113-162. https://doi.org/10.1007/978-3-319-62206-4_5

Vaiphasa C, Skidmore AK & de Boer WF. 2006. A post-classifier for mangrove mapping using ecological data. ISPRS Journal of Photogrammetry and Remote Sensing, 61(1): 1-10. https://doi.org/10.1016/j.isprsjprs.2006.05.005

Valderrama L, Troche C, Rodriguez MT, Marquez D, Vázquez B, Velázquez S, Vázquez A, Cruz MI & Ressl R. 2014. Evaluation of mangrove cover changes in Mexico during the 1970–2005 period. Wetlands, 34(4): 747-758. https://doi.org/10.1007/s13157-014-0539-9

Wang K, Li Z & Cribb M. 2006. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment, 102(3-4): 293-305. https://doi.org/10.1016/j.rse.2006.02.007

Wang D, Wan B, Qiu P, Su Y, Guo Q, Wang R, Sun F & Wu X. 2018. Evaluating the performance of sentinel-2, landsat 8 and pléiades-1 in mapping mangrove extent and species. Remote Sensing, 10(9): 1468. https://doi.org/10.3390/rs10091468

Wang D, Wan B, Qiu P, Zuo Z, Wang R & Wu X. 2019. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV- LiDAR sampling. Remote Sensing,11(18): 2156. https://doi.org/10.3390/rs11182156

Wardhani MK. 2011. Kawasan konservasi mangrove: Suatu potensi ekowisata. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 4(1): 60-76. https://doi.org/10.21107/jk.v4i1.891

Wijaya NI, Trisyani N & Sulestiani A. 2019. Potensi pengembangan budidaya silvofishery di Area Mangrove Wonorejo Surabaya. Jurnal Penelitian Hutan dan Konservasi Alam, 16(2): 173-189.

Xia Q, Qin CZ, Li H, Huang C, Su FZ & Jia MM. 2020. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecological Indicators, 113: 106196. https://doi.org/10.1016/j.ecolind.2020.106196

Xiao X, Boles S, Frolking S, Salas W, Moore Iii B, Li C, He L & Zhao R. 2002. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using vegetation sensor data. International Journal of Remote Sensing, 23(15): 3009-3022. https://doi.org/10.1080/01431160110107734

Xu H. 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179

Xu H. 2008. A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing, 29(14): 4269-4276. https://doi.org/10.1080/01431160802039957

Yao Q & Liu KB. 2017. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida. Plos One, 12(3): 0173670. https://doi.org/10.1371/journal.pone.0173670

Yusrini L. 2018. Persepsi dan perilaku pengunjung dalam mendukung keberlanjutan Taman Wisata Alam Mangrove, Angke Kapuk Jakarta. Edusturisma, 2(2): 16- 34.

Zainuri AM, Takwanto A & Syarifuddin A. 2017. Konservasi ekologi hutan mangrove di Kecamatan Mayangan Kota Probolinggo. Jurnal Dedikasi, 14: 01-07. https://doi.org/10.22219/dedikasi.v14i0.4292

Zekoll V, Main-Knorn M, Louis J, Frantz D, Richter R & Pflug B. 2021. Comparison of masking algorithms for Sentinel-2 imagery. Remote Sensing, 13(1): 137. https://doi.org/10.3390/rs13010137

Zha Y, Gao J & Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3): 583-594. https://doi.org/10.1080/01431160304987

Downloads

Published

2022-08-31

How to Cite

Rahmawati, A. D. ., Asy’Ari, R. ., Fathonah, M. A. ., Priyanto, Zamani, N. P., Pramulya, R. ., & Setiawan, Y. . (2022). Vegetation-Water-Built Up Index Combined: Algorithm Indices Combination for Characterization and distribution of Mangrove Forest through Google Earth Engine : The spatial characteristics of Jakarta’s urban mangroves. CELEBES Agricultural, 3(1), 20–42. https://doi.org/10.52045/jca.v3i1.298

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)