Data Indo InaFire: Spatial Visualization of Peatland Fire Impact and Ecosystem Restoration Monitoring in PHU Jambi using Earth Engine Apps and Sentinel-2 MSI Imagery
https://doi.org/10.52045/jca.v4i2.737
Keywords:
Peatland, GEE, PHU, Jambi, NBRAbstract
Peatlands formed from long-term accumulation of partially decomposed organic matter in wetland areas. This particular ecosystem is not only capable of sequestering significant quantities of carbon but also vulnerable to forest and land fires (karhutla). Peatland produces considerable CO₂ emissions during fire occurrences, which consequently requires spatiotemporal monitoring to sustain its ecological roles and functions. This study aims to map the severity of fires in peatland ecosystems, estimate the success of post-fire restoration, and develop an Earth Engine Apps-based monitoring platform for peatland fire monitoring. Fire severity assessment and post-fire restoration success estimation were conducted in Jambi's Peat Hydrological Unit (PHU) in 2019 using the Normalized Burn Ratio (NBR) index derived from Sentinel-2 MSI satellite imagery. Most of Jambi PHU's fire severity and restoration levels are high. The area of PHU Jambi with high fire severity was 7,822.91 hectares, while the area with high restoration success was 23,744.69 hectares. NBR monitoring in PHU Jambi can be used to detect fire severity and restore success. The visualization of forest and land fire severity was successfully displayed on the Data Indo InaFire webGIS platform, an Earth Engine Apps-based monitoring platform.
Downloads
References
Adni SF, Asy’Ari R, Raihan F & Putra EI. 2024. Carbon stock estimation based on remote sensing in the northern coast of Java. In IOP Conference Series: Earth and Environmental Science. 1315:1-9. https://doi.org/10.1088/1755-1315/1315/1/012042
Alamako WB, Dzulfigar A, Asy’Ari R, Nurhawaillah LE, Raihan F, Pudjawati NH, Inanda IA, Pramestri AQ, Humanisa NH, Pratama OR, Saputra R, Setiawan Y, Zamany NP, Pramulya R. 2024. Mining Reclamation Monitoring using Sentinel-2 Temporal Data: Case Study in PT Adaro Energy Indonesia Mining Area. SSRS Journal B: Spatial Research, 2: 10-23. https://publishing.ssrs.or.id/ojs/index.php/ssrs-b/article/view/24
Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM & Brisco B. 2020. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052
Asy'Ari R, Ranti A, Rahmawati AD, Zulfajrin M, Nurazizah LL, Putra MCA, Khairunnisa ZN, Prameswari FA, Pramulya R, Zamani NP, Setiawan Y,& Sudrajat, A. 2023. High heterogeneity LULC classification in Ujung Kulon National Park, Indonesia: A study testing 11 indices, Random Forest, sentinel-2 MSI, and GEE-based cloud computing. Celebes Agricultural, 3(2): 82-99. https://doi.org/10.52045/jca.v3i2.381
Belgiu M & Drăguţ L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Breiman L. 2001. Random forest. Machine Learning. 45(1):5–32. https://doi.org/10.1023/a:1010933404324
Cahyono BK, Aditya T, & Istarno. 2022. The Determination of Priority Areas for the Restoration of Degraded Tropical Peatland Using Hydrological, Topographical, and Remote Sensing Approaches. Land, 11(7): 1094. https://doi.org/10.3390/land11071094
Daughtry CS, Walthall CL, Kim MS, De Colstoun EB, & McMurtrey Iii JE. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2): 229-239. https://doi.org/10.1016/S0034-4257(00)00113-9
Du J, Watts JD, Jiang L, Lu H, Cheng X, Duguay C, Tarolli P. 2019. Remote sensing of environmental changes in cold regions: Methods, achievements and challenges. Remote Sensing. 11(16):1952. https://doi.org/10.3390/rs11161952
Duryat D & Darmawan A. 2019. Efisiensi penggunaan citra multisensor untuk pemetaan tutupan lahan. Jurnal Sylva Lestari, 7(3):342-349. http://dx.doi.org/10.23960/jsl37342-349
Escuin S, Navarro R, & Fernández P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4): 1053-1073. https://doi.org/10.1080/01431160701281072
Harenda KM, Lamentowicz M, Samson M & Chojnicki BH. 2018. The role of peatlands and their carbon storage function in the context of climate change. Interdisciplinary approaches for sustainable development goals: Economic growth, social inclusion and environmental protection, 169-187.https://doi.org/10.1007/978-3-319-71788-3_12
Harrison ME, Ottay JB, D’Arcy LJ, Cheyne SM, Anggodo, Belcher C, van Veen FF. 2020. Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature, 2(1): 4-28. https://doi.org/10.1002/pan3.10060
Ho TK. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(8):832–844. https://doi.org/10.1109/34.709601
Huete AR. 1988. A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environemt. 25: 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
Huete AR, Didan K, Miura T, Rodriguez EP, Gao X & Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Humpenöder F, Karstens K, Lotze-Campen H, Leifeld J, Menichetti L, Barthelmes A, & Popp A. 2020. Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 15(10): 104093. https://doi.org/10.1088/1748-9326/abae2a
Ghazaryan G, Dubovyk O, Kussul N & Menz G. 2016. Towards an improved environmental understanding of land surface dynamics in Ukraine based on multi-source remote sensing time-series datasets from 1982 to 2013. Remote Sensing. 8(8):617. https://doi.org/10.3390/rs8080617
Jurgens C. 1997. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing. 18(17): 3583-3594. https://doi.org/10.1080/014311697216810
Kaufman YJ & Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote sensing, 30(2): 261-270. https://doi.org/10.1109/36.134076
Kim MS. 1994. The use of narrow spectral bands for improving remote sensing estimations of fractionally absorbed photosynthetically active radiation.
LCDI. 2019. Pemetaan Lahan Gambut Menggunakan Citra Satelit Aktif dan Pasif. Low Carvon Development Indonesia. Jakarta
Lymburner L, Beggs PJ, & Jacobson CR. 2000. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(2): 183-192.
Madinu AMA, Jouhary NA, Ulfa A, Rahmadhanti IN, Pudjawati NH, Asy’Ari R, Zamani NP, Pramulya R & Setiawan, Y. 2024. Monitoring of coastal dynamics at Subang Regency using Landsat Collection Data and Cloud Computing Based. In BIO Web of Conferences, 106: 1-18. https://doi.org/10.1051/bioconf/202410604005
Mahrad BE, Newton A, Icely JD, Kacimi I, Abalansa S, Snoussi M. 2020. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review. Remote Sensing, 12(14): 2313. https://doi.org/10.3390/rs12142313
Main-Knorn M, Pflug B, Louis J, Debaecker V, Müller-Wilm U & Gascon F. 2017. Sen2Cor for sentinel-2. In Image and signal processing for remote sensing XXIII, 10427: 37-48. https://doi.org/10.1117/12.2278218
Miller JD, Knapp EE, Key CH, Skinner CN, Isbell CJ, Creasy RM, & Sherlock JW. 2009. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment, 113(3): 645-656. https://doi.org/10.1016/j.rse.2008.11.009
Miller JD, Thode AE. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote sensing of Environment, 109(1): 66-80. https://doi.org/10.1016/j.rse.2006.12.006
Minasny B, Berglund Ö, Connolly J, Hedley C, de Vries F, Gimona A, & Widyatmanti W. 2019. Digital mapping of peatlands–A critical review. Earth-Science Reviews, 196: 102870. https://doi.org/10.1016/j.earscirev.2019.05.014
Nasery S & Kalkan K. 2020. Burn area detection and burn severity assessment using Sentinel 2 MSI data: The case of Karabağlar district, İzmir/Turkey. Turkish Journal of Geosciences, 1(2):72-77.
Nugraha ES, Madinu AMA, Jannah SZ, Ameiliani TH, Asy'Ari R, Prameswari FA, Zulfajrin M, Nurazizah LL, Putra MCA, Khairunnisa ZN, Rahmawati AD, Setiawan Y, Anggodo A. 2024. Investigating the Impact of the Tsunami at Handeleum Island Resort, Ujung Kulon National Park Using Geospatial Technology. SSRS Journal B: Spatial Research, 2, 24-35. https://publishing.ssrs.or.id/ojs/index.php/ssrs-b/article/view/25
Phiri D, Simwanda M Salekin S, Nyirenda VR, Murayama Y & Ranagalage M. 2020. Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14): 1-35. https://doi.org/10.3390/rs12142291
Picotte JJ, & Robertson, K. 2011. Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sensing, 3(8), 1680-1690. https://doi.org/10.3390/rs3081680
Pratama BB, Pratiwi D, & Qirom MA. 2023. Monitoring and identifying forest burnt area using NBR Landsat and Landuse in Central Kalimantan. IOP Conference Series: Earth and Environmental Science, 1241(1) 012107. https://doi.org/10.1088/1755-1315/1241/1/012107
Rahmawati AD, Priyanto P & Yovi EY. (2023,). Analysis of OSH risk level in forest management activities using remote sensing approach in RPH Takokak, KPH Sukabumi, West Java Province. In IOP Conference Series: Earth and Environmental Science, 1266: 1-16. https://doi.org/10.1088/1755-1315/1266/1/012033
Rizqika SN, Prasetyo Y & Yusuf MA. 2022. Analisis akurasi perbandingan algoritma indeks kebakaran hutan berdasarkan citra sentinel-2A, Elipsoida, 5(1):1-7. https://doi.org/10.14710/elipsoida.2022.16858
Roy DP, Boschetti L, Trigg S. N. (2006). Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and remote sensing letters, 3(1), 112-116. https://doi.org/10.1109/LGRS.2005.858485
Roy DP, Li Z, Giglio L, Boschetti L & Huang H. 2021. Spectral and diurnal temporal suitability of GOES advanced baseline imager (ABI) reflectance for burned area mapping. The International Journal of Applied Earth Observation and Geoinformation, 96:1-14. https://doi.org/10.1016/j.jag.2020.102271
Rowland JA, Bracey C, Moore JL, Cook CN, Bragge P, Walsh JC. 2021. Effectiveness of conservation interventions globally for degraded peatlands in cool-climate regions. Biological Conservation, 263: 109327. https://doi.org/10.1016/j.biocon.2021.109327
Saharjo BH. 2023. GHG Emissions’ Estimation from Peatland Fires in Indonesia—Review and Importance of Combustion Factor. Vegetation Fires and Pollution in Asia, 433-445. https://doi.org/10.1007/978-3-031-29916-2_25
Santos SMBD, Bento-Gonçalves A, Franca-Rocha W & Baptista G. 2020. Assessment of burned forest area severity and postfire regrowth in chapada diamantina national park (Bahia, Brazil) using dnbr and rdnbr spectral indices. Geosciences, 10(3):1-19. https://doi.org/10.3390/geosciences10030106
Saputra E, Khaira U & Abidin Z. 2021. Implementasi algoritme SVM untuk klasifikasi area terbakar di lahan gambut. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 10(1): 19-24. https://doi.org/10.22146/jnteti.v10i1.990
Saragi-Sasmito MF, Murdiyarso D, June T & Sasmito SD. 2019. Carbon stocks, emissions, and above ground productivity in restored secondary tropical peat swamp forests. Mitigation and Adaptation Strategies for Global Change, 24(1):521-533.https://doi.org/10.1007/s11027-018-9793-0
Sari CP, Subiyanto S & Awaluddin M. 2014. Analisis deforestasi hutan di provinsi Jambi menggunakan metode penginderaan jauh (studi kasus Kabupaten Muaro Jambi). Jurnal Geodesi Undip, 3(2), 13-27. https://doi.org/10.14710/jgundip.2014.5203
Saputri HR, Asy'Ari R, Abd Malik AM, Dzulfigar A, Marfi KP, Raihan F, Setiawan Y. 2024. Hotspot Distribution Assessment on The Peat Hydrological Unit (PHU) in Riau Province. SSRS Journal B: Spatial Research, 2: 44-56. https://publishing.ssrs.or.id/ojs/index.php/ssrs-b/article/view/30
Saputri HR, Inanda IA, Rahmadhanti IN, Asy’Ari R, Fadhil MH, Adni SF, Raihan F, Putra EI, Setiawan Y, Pramulya R, & Zamani NP. 2024B. Data Indo InaPeat: An Environmental Monitoring Platform on Peatlands Area and PHU (Peat Hydrological Units) using Earth Engine Apps. SSRS Journal A: Agro-Environmental Research, 2: 20–27. https://publishing.ssrs.or.id/ojs/index.php/ssrs-a/article/view/19
Sutikno S, Rinaldi R, Saputra E, Kusairi M, Saharjo BH, & Putra EI. 2020. Water management for hydrological restoration and fire prevention in tropical peatland. IOP Conference Series: Materials Science and Engineering, 933(1): 012053. https://doi.org/10.1088/1757-899X/933/1/012053
Scheip CM & Wegman KW. 2021. HazMapper: a global open-source natural hazard mapping application in Google Earth Engine. Natural Hazards and Earth System Sciences, 21(5), 1495-1511. https://doi.org/10.5194/nhess-21-1495-2021
Septian A, Junedi H & Mastur AK. 2023. Estimasi cadangan karbon bawah permukaan lahan gambut di Desa Catur Rahayu Kecamatan Dendang Kabupaten Tanjung Jabung Timur. Jurnal Tanah dan Sumberdaya Lahan, 10(2):285-295. https://doi.org/10.21776/ub.jtsl.2023.010.2.12
Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P & Homayouni S. 2020. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724
Surahman A, Shivakoti GP, & Soni P. (2019. Climate change mitigation through sustainable degraded peatlands management in central Kalimantan, Indonesia. International Journal of the Commons, 13(2): 859-866. https://www.jstor.org/stable/26819573
Syaufina L, Sitanggang IS, Anggraini A & Afina FS. 2021. Fire severity assessment on peatland vegetation diversity. IOP Conference Series: Earth and Environmental Science, 1025: 1-10. https://doi.org/10.1088/1755-1315/1025/1/012014
Rad AM, Kreitler J, & Sadegh, M. 2021. Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, 140: 105030. https://doi.org/10.1016/j.envsoft.2021.105030
Ranti A, Asy’Ari R & Ameiliani TH. 2022. Detection of Urban Forest Change in Jabodetabek Megacity Using Sentinel 2 and Landsat 8 Imagery Through Google Earth Engine Cloud Computing Platform. In IOP Conference Series: Earth and Environmental Science, 959(1): 012028. https://iopscience.iop.org/article/10.1088/1755-1315/959/1/012028
Teodoro A & Ana A. 2019. A statistical and spatial analysis of portuguese forest fires in summer 2016 considering landsat 8 and sentinel 2A data. Environments, 6(3):36-50. https://doi.org/10.1088/1755-1315/1025/1/01201
Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179
Xu H. 2008. A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing,29(14): 4269-4276. https://doi.org/10.1080/01431160802039957
Xiao X, Boles S, Frolking S, Salas W, Moore Iii B, Li C, Zhao R. 2002. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. International Journal of Remote Sensing, 23(15): 3009-3022. https://doi.org/10.1080/01431160110107734
Vedovato LB, jacon AD, Pessôa ACM, Lima A, Oliveira LE & De Aragão CRUZ. 2015. Detection of burned forests in Amazonia using the normalized burn ratio (NBR) and linear spectral mixture model from Landsat 8 images. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto (SBSR). 25:2984-2991
Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. 2007. Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10: 1069-1083. https://doi.org/10.1007/s10021-007-9080-5
Weng Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of photogrammetry and remote sensing, 64(4), 335-344. https://doi.org/10.1016/j.isprsjprs.2009.03.007
Widodo RB. 2014. Pemodelan spasial resiko kebakaran hutan (studi kasus Provinsi Jambi, Sumatera). Jurnal Pembangunan Wilayah & Kota, 10(2): 127-138. https://doi.org/10.14710/pwk.v10i2.7643
Zhang C, Di L, Yang Z, Lin L & Hao P. 2020. AgKit4EE: A toolkit for agricultural land use modeling of the conterminous US based on google earth engine. Environmental Modelling & Software, 129: 1-33. https://doi.org/10.1016/j.envsoft.2020.104694
Zhao S, Liu M, Tao M, Zhou W, Lu X, Xiong Y, Wang Q. 2023. The role of satellite remote sensing in mitigating and adapting to global climate change. Science of the Total Environment,904(15): 166820. https://doi.org/10.1016/j.scitotenv.2023.166820
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Ilham, Citra Putri Perdana, Verawati Ayu Lestari, Ali Dzulfigar, Hanum Resti Saputri, Danik Septianingrum, Rahmat Asy’Ari, Yudi Setiawan, Rahmat Pramulya, Neviaty Putri Zamani
This work is licensed under a Creative Commons Attribution 4.0 International License.