High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing

https://doi.org/10.52045/jca.v3i2.381

Authors

  • Rahmat Asy'Ari Department of Forest Management, IPB University
  • Aulia Ranti Department of Forest Management, IPB University
  • Azelia Dwi Rahmawati Department of Forest Management, IPB University
  • Moh Zulfajrin Department of Soil Science and Land Resource, IPB University
  • Lina Lathifah Nurazizah Department of Agronomy and Horticulture, IPB University
  • Made Chandra Aruna Putra Department of Marine Science and Technology, IPB University
  • Zayyaan Nabiila Khairunnisa Department of Civil and Environmental Engineering, IPB University
  • Faradilla Anggit Prameswari Department of Geography, Faculty of Mathematics and Natural Science (FMIPA), University of Indonesia
  • Rahmat Pramulya Faculty of Agriculture, Teuku Umar University
  • Neviaty P. Zamani Center for Transdisciplinary And Sustainability Sciences, IPB University
  • Yudi Setiawan Center for Environmental Research, IPB University
  • Ajat Sudrajat Ujung Kulon National Park, Ministry of Environment and Forestry, Indonesia
  • Anggodo Ujung Kulon National Park, Ministry of Environment and Forestry, Indonesia

Keywords:

LULC, Indices, Random Forest, Sentinel-2, Ujung Kulon NP

Abstract

The Ujung Kulon National Park (UKNT) is one of the national parks on the island of Java and has an essential role in saving endemic species in Indonesia. As a form of national park conservation effort, the completeness of LULC spatial data is a primary database that is indispensable in determining national park management policies. Therefore, this research was conducted to map the LULC (Land Use - Land Cover) in the forest landscape with high heterogeneity in UKNT. Sentinel-2 MSI (Multispectral Instrument) image data were classified using the Random Forest (RF) classification algorithm and tested using 11 index algorithms. The classification process takes place on a cloud computing-based geospatial platform, Google Earth Engine (GEE). This test resulted in 10 LULC classes; water had the broadest percentage of 45.44%. Meanwhile, the primary forest has an area of 21,868.41 or about 19.53% of the total area of the national park. However, there are some discrepancies in the spatial information generated by this classification process, so it is considered necessary to evaluate the combination of indexes, training data, and classification algorithms to limit the classification area. Therefore, this study is expected to be considered for further research related to LULC in high-heterogeneity landscapes.

Downloads

Download data is not yet available.

References

Allen JC & Barnest DF. 1985. The causes of deforestation in developing countries. The Annals of the American Association of Geographers, 75(2): 163-184. https://doi.org/10.1111/j.1467-8306.1985.tb00079.x

Aprilianti HS, Ari RA, Ranti A & Aslam MF. 2021. Identification and classification of cloud computing-based vegetation index values on several lands used in Bogor Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 918: 012011. https://doi.org/10.1088/1755-1315/918/1/012011

Armenteras D, Rudas G, Rodriguez N, Sua S, & Romero M. 2006. Patterns and causes of deforestation in the Colombian Amazon. Ecological Indicators, 6(2):353–368. https://doi.org/10.1016/j.ecolind.2005.03.014

Austin KG, Schwantes A, Gu Y, & Kasibhatla PS. 2019. What causes deforestation in Indonesia? Environmental Research Letters, 14(2). https://doi.org/10.1088/1748-9326/aaf6db

Asy’ari R, Rahmawati AD, Sa'diyya N, Gustawan AH, Setiawan Y, Zamani NP, Pramulya R. 2022. Mapping mangrove forest distribution on Banten, Jakarta, and West Java Ecotone Zone from Sentinel-2-derived indices using cloud computing based Random Forest. The Journal of Natural Resources and Environment Management (JPSL), 12(1): 97-111. https://doi.org/10.29244/jpsl.12.1.97-111

Belgiu M & Drăguţ L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Brook SM, Dudley N, Mahood SP, Polet G, Williams AC, Duckworth JW, van Ngoc T, & Long B. 2014. Lessons learned from the loss of a flagship: The extinction of the Javan rhinoceros Rhinoceros sondaicus annamiticus from Vietnam. Biological Conservation, 174:21–29. https://doi.org/10.1016/j.biocon.2014.03.014

Borrero JC, Solihuddin T, Fritz HM, Lynett PJ, Prasetya GS, Skanavis V, Husrin S, Kongko W, Istiyanto DC, Daulat A, & Purbani D. 2020. Field survey and numerical modelling of the December 22, 2018 Anak Krakatau tsunami. Pure and Applied Geophysics, 177(6): 2457-2475. https://doi.org/10.1007/s00024-020-02515-y

Carr D. 2009. Population and deforestation: why rural migration matters. Progress in Human Geography, 33(3): 355-378. https://doi.org/10.1177/0309132508096031

Carr DL, Suter L, & Barbieri A. 2005. Population dynamics and tropical deforestation: state of the debate and conceptual challenges. Population and Environment, 27(1): 89-113. https://doi.org/10.1007%2Fs11111-005-0014-x

Chatelain C, Gautier L, & Spichiger R. 1996. A recent history of forest fragmentation in southwestern Ivory Coast. Biodiversity & Conservation, 5(1): 37–53. https://doi.org/10.1007/BF00056291

Congalton R & Green K. 2019. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, Third Edition. United States: CRC Press.

Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1): 35-46. https://doi.org/10.1016/0034-4257(91)90048-B

Dauvergne P. 1993. The Politics of Deforestation in Indonesia. Pacific Affairs, 66(4):497. https://doi.org/10.2307/2760676

Dwiyahreni AA, Fuad HA, Muhtar S, Soesilo TE, Margules C, & Supriatna J. 2021. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Scientific reports, 11(1): 1-14. https://doi.org/10.1038/s41598-021-83586-2

Dwiyahreni AA, Fuad HA, Soesilo TE, Margules C, & Supriatna J. 2021. Forest cover changes in Indonesia’s terrestrial national parks between 2012 and 2017. Biodiversitas, 22(3): 1235-1242. https://doi.org/10.13057/biodiv/d220320

Fattore C, Abate N, Faridani F, Masini N, & Lasaponara R. 2021. Google earth engine as multi-sensor open-source tool for supporting the preservation of archaeological areas: The case study of flood and fire mapping in Metaponto, Italy. Sensors, 21(5):1–27. https://doi.org/10.3390/s21051791

Febriana I, Kusmana C, & Rahmat UM. 2020. Komposisi jenis tumbuhan dan analisis sebaran langkap (Arenga obtusifolia Mart.) di Taman Nasional Ujung Kulon. Journal of Natural Resources and Environmental Management, 10(1): 52-65. https://doi.org/10.29244/jpsl.10.1.52-65

Floreano IX & de Moraes LAF. 2021. Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environmental Monitoring and Assessment, 193(4): 1-17. https://doi.org/10.1007/s10661-021-09016-y

Galicia L & García-Romero A. 2007. Land use and land cover change in highland temperate forests in the Izta-Popo National Park, Central Mexico. Mountain Research and Development, 27(1): 48-57. https://doi.org/10.1659/0276-4741(2007)27[48:LUALCC]2.0.CO;2

Ghimire B, Rogan J, & Miller J. 2010. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1(1): 45-54. https://doi.org/10.1080/01431160903252327

Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3): 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, & Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

Gunawan H, Iskandar S, Sihombing VS, & Wienanto R. 2017. Conflict between humans and leopards (Panthera pardus melas Cuvier, 1809) in Western Java, Indonesia. Biodiversitas Journal of Biological Diversity, 18(2): 652-658. https://doi.org/10.13057/biodiv/d180229

Harada K, Prabowo D, Aliadi A, Ichihara J, Ma HO. 2015. How can social safeguards of REDD+ function effectively conserve forests and improve local livelihoods? A case from Meru Betiri National Park, East Java, Indonesia. Land, 4(1):119–139. https://doi.org/10.3390/land4010119

Hariyadi AR, Priambudi A, Setiawan R, Purnama H, & Yayus A. 2012. Optimizing the habitat of the Javan rhinoceros (Rhinoceros sondaicus) in Ujung Kulon National Park by reducing the invasive palm Arenga obtusifolia. Pachyderm, 52: 49-54.

Heriyanto NM, & Iskandar S. 2004. Status populasi dan habitat sural (Presbytis comata desmarest) di kompleks hutan Kalajeten-Karangranjang, Taman Nasional Ujung Kulon. Jurnal Penelitian Hutan dan Konservasi Alam, 1(1): 89-98. https://doi.org/10.20886/jphka.2004.1.1.89-98

Huete A, Didan K, Miura T, Rodriguez EP, Gao X & Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Kaufman YJ & Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOSMODIS. IEEE Transactions on Geoscience and Remote sensing, 30(2): 261-270. https://doi.org/10.1109/36.134076

Kumar L & Mutanga O. 2018. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101509

Li W, Dong R, Fu H, Wang J, Yu L, & Gong P. 2020. Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 237: 111563. https://doi.org/10.1016/j.rse.2019.111563

Lymburner L, Beggs PJ & Jacobson CR. 2000. Estimation of canopy-average surface- specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(2): 183-192.

Milto KD & Lukin YA. 2020. A revised herpetofauna of Ujung Kulon National Park, West Java, Indonesia. Russian Journal of Herpetology, 27(6):353–368. https://doi.org/10.30906/1026-2296-2020-27-6-353-368

Muhari A, Heidarzadeh M, Susmoro H, Nugroho HD, Kriswati E, Wijanarto AB, Imamura F, & Arikawa T. 2019. The December 2018 Anak Krakatau Volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 176(12): 5219-5233. https://doi.org/10.1007/s00024-019-02358-2

Mutanga O & Kumar L. 2019. Google earth engine applications. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050591

Nijman V. 2013. One hundred years of solitude: Effects of long-term forest fragmentation on the primate community of Java, Indonesia. In Marsh LK & Collins CA (Eds.) Primates in Fragments: Complexity and Resilience, Springer New York. hlm 33–45. https://doi.org/10.1007/978-1-4614-8839-2_3

Rad AM, Kreitler J, Sadegh M. 2021. Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, 140: 105030. https://doi.org/10.1016/j.envsoft.2021.105030

Rouse jr JW, Haas RH, Schell JA & Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication. 351(1974): 309

Sandground JH. 1933. Two new helminths from Rhinoceros sondaicus. The Journal of Parasitology, 19(3): 192-204. https://doi.org/10.2307/3271925

Santiapillai C & MacKinnon K. 1990. Conservation and Management of Rhinos in Indonesia. WWF - Asia Programme.

Santosa Y, Mamat Rahmat U, Prasetyo LB, & Kartono AP. 2013. Javan rhino (Rhinoceros sondaicus desmarest 1822) utilization distribution and habitat selection in Ujung Kulon National Park. Jurnal Manajemen Hutan Tropika, 19(1):31–38. https://doi.org/10.7226/jtfm.19.1.31

Scepan J. 1999. Thematic validation of high-resolution global land-cover data sets. Photogrammetric Engineering and Remote Sensing, 65: 1051-1060.

Setiawan R, Gerber BD, Rahmat UM, Daryan D, Firdaus AY, Haryono M, Khairani KO, Kurniawan Y, Long B, Lyet A, & Muhiban M. 2018. Preventing global extinction of the Javan rhino: tsunami risk and future conservation direction. Conservation Letters, 11(1): 12366. https://doi.org/10.1111/conl.12366

Simamora TI, Purbowo SD, & Laumonier Y. 2021. Looking for indicator bird species in the context of forest fragmentation and isolation in West Kalimantan, Indonesia. Global Ecology and Conservation, 27. https://doi.org/10.1016/j.gecco.2021.e01610

Smith JH, King T, Campbell C, Cheyne SM, & Nijman V. 2018. Modelling population viability of three independent Javan gibbon (Hylobates moloch) populations on Java, Indonesia. Folia Primatologica, 88(6): 507-522. https://doi.org/10.1159/000484559

Story M & Congalton RG. 1986. Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3): 397-399.

Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, & Brisco B. 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164:152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001

Pal M. 2005. Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1): 217-222. https://doi.org/10.1080/01431160412331269698

Purwaningsih P & Atikah TD. 2018. Diversitas floristik dan struktur vegetasi di hutan Gunung Payung, Taman Nasional Ujung Kulon. Berita Biologi, 17(3): 335-349. http://dx.doi.org/10.14203/beritabiologi.v17i3.3434

Qu L, Chen Z, Li M, Zhi J, & Wang H. 2021. Accuracy improvements to pixel-based and object-based LULC classification with auxiliary datasets from google earth engine. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030453

Wandani RA, Asy’Ari R, Setiawan Y, & Anggodo A. 2022. Deteksi ekspansi padi pada lanskap hutan di Taman Nasional Ujung Kulon, Indonesia menggunakan algoritma RF dan Sentinel-2 multispectral instrumen. National Multidisciplinary Sciences, 1(2):235–245. doi:10.32528/nms.v1i2.64. https://doi.org/10.32528/nms.v1i2.64

Widiyanto W & Hsiao SC. 2020. Potential tsunami hazard in Ujung Kulon National Park. IOP Conference Series: Materials Science and Engineering, 982(1): 012034. https://doi.org/10.1088/1757-899X/982/1/012034

Widiyanto W, Hsiao SC, Chen WB, Santoso PB, Imananta RT, & Lian WC. 2020. Run-up, inundation, and sediment characteristics of the 22 December 2018 Sunda Strait tsunami, Indonesia. Natural Hazards and Earth System Sciences, 20(4): 933-946. https://doi.org/10.5194/nhess-20-933-2020

Xiao X, Boles S, Frolking S, Salas W, Moore Iii B, Li C, He L & Zhao R. 2002. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using vegetation sensor data. International Journal of Remote Sensing, 23(15): 3009-3022. https://doi.org/10.1080/01431160110107734

Xu H. 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179

Xu H. 2008. A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing, 29(14): 4269-4276. https://doi.org/10.1080/01431160802039957

Yanuar A & Chivers DJ. 2010. Impact of forest fragmentation on ranging and home range of siamang (Symphalangus syndactylus) and agile gibbons (Hylobates agilis). In Gursky S & Supriatna J (Eds.) Indonesian Primates, Springer New York. 97–119. https://doi.org/10.1007/978-1-4419-1560-3_7

Zha Y, Gao J & Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3): 583-594. https://doi.org/10.1080/01431160304987

Downloads

Published

2023-02-28

How to Cite

Asy’Ari, R. ., Ranti, A., Rahmawati, A. D. ., Zulfajrin, M. ., Nurazizah, L. L. ., Putra, M. C. A. ., … Anggodo. (2023). High Heterogeneity LULC Classification in Ujung Kulon National Park, Indonesia: A Study Testing 11 Indices, Random Forest, Sentinel-2 MSI, and GEE-based Cloud Computing. CELEBES Agricultural, 3(2), 82–99. https://doi.org/10.52045/jca.v3i2.381

Most read articles by the same author(s)