Comparative Analysis of Soil Fertility in Sandy Soils along a Toposequence Transect in Sandai, West Kalimantan

https://doi.org/10.52045/jca.v5i1.779

Authors

  • Heru Bagus Pulunggono Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia https://orcid.org/0000-0003-3924-7839
  • Dea Pratiwi Bachelor of Agriculture, Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Moh Zulfajrin Computational Soil Science Research Group
  • Lina Latifah Nurazizah Computational Soil Science Research Group
  • Affan Chahyahusna Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Iskandar Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia

Keywords:

BCSR, FMSCP, soil-fertility-assessment, SLAN, toposequence

Abstract

Addressing food crises and land degradation potential requires multisteps agricultural development, including soil fertility assessment. This study evaluates sandy soil fertility status along a toposequence transect in Sandai District, Ketapang Regency, West Kalimantan. Seven observation points (TP1, TP2, TP3, TK1, TK2, TK3, and TK4) were established, with soil samples collected from depths of 0-30 cm and 30-60 cm. Soil fertility assessment was conducted using three criteria: Five Major Soil Chemical Properties (FMSCP), Basic Cation Saturation Ratio (BCSR), and Sufficiency Level of Available Nutrients (SLAN). The FMSCP method exhibited low to very low fertility statuses, while the BCSR and SLAN methods revealed significant variations in soil fertility, ranging from deficient to excessive. Both the BCSR and SLAN methods demonstrated strong relationships with soil parent material and slope gradient, as evaluated through a multivariate approach. The BCSR method indicated deficient to balanced status at all profile points, whereas dominant balanced to excessive statuses were observed at all fertility points. The SLAN national criteria predominantly indicated deficient status for calcium (Ca), magnesium (Mg), and potassium (K), while the international criteria identified K deficiency only. This study served as forums to discuss fertility assessment in tropical soils. Also, recommends the potential for implementing the FMSCP criteria-based soil fertility assessment method for tropical Indonesian sandy soils and consider the involvement of balancing ratios in a more comprehensive soil fertility evaluation approach.

Downloads

Download data is not yet available.

References

Aitken RL & Scott BJ. 1999. Magnesium. In: Peverill KI, Sparrow LA, Reuter DJ. (Eds.) Soil Analysis: An Interpretation Manual. Melbourne (AU): CSIRO Publishing. pp.255–262. https://doi.org/10.1071/9780643101357

Albrecht WA. 1975. The Albrecht papers. Vol. 1: Foundation Concepts. Acres USA, Kansas City

Alva AK. 2006. Sustainable nutrient management in sandy soils–Fate and transport of nutrients from animal manure versus inorganic sources. Journal of Sustainable Agriculture. 28(4):139–155. https://doi.org/10.1300/J064v28n04_11

Alvafritz L & Hertel D. 2024. Impacts of land use history on leaf litter input, chemical composition, decomposition and related nutrient cycling in young and old secondary tropical lowland rainforests (Sumatra, Indonesia). Plant Soil, 495:359–370. https://doi.org/10.1007/s11104-023-06330-x

Anda M. 2012. Cation imbalance and heavy metal content of seven Indonesia soils as affected by elemental compositions of parent rocks. Geoderma. 180(190): 388-396. https://doi.org/10.1016/j.geoderma.2012.05.009

Antonangelo JA, Culman S & Zhang H. 2024. Comparative analysis and prediction of cation exchange capacity via summation: Influence of biochar type and nutrient ratios. Frontiers in Soil Science, 4. https://doi.org/10.3389/fsoil.2024.1371777

Bear FE & Prince AL. 1945. Cation-equivalent constancy in alfalfa1. Agronomy Journal. 37(3):217-222. https://doi.org/10.2134/agronj1945.00021962003700030005x

Bear FE, Prince AL, Toth SJ, & Purvis ER. 1951. Magnesium in plants and soil (Bulletin No. 760). New Jersey Agricultural Experiment Station

Breitfeld HT, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig-Breitfeld J and van Hattum MWA. 2020. Mesozoic paleoPacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh metamorphic group. Frontier in Earth Sciences. 8:568715. https://doi.org/10.3389/feart.2020.568715

Brock C, Jackson-Smith D, Culman A, Doohan D, & Herms C. 2021a. Soil balancing within organic farming: negotiating meanings and boundaries in an alternative agricultural community of practice. Agriculture and Human Values. 1(1): 1-17. https://doi.org/10.1007/s10460-020-10165-y

Brock C, Jackson-Smith D, Kumarappan S, Culman S, Doohan D, & Herms C. 2021b. The prevalence and practice of soil balancing among organic corn farmers. Renewable Agriculture and Food Systems. 36(4):365-374. https://doi.org/10.1017/S1742170520000381

Baker DE & Amacher MC. 1981. The development and interpretation of a diagnostic soil testing program (Bulletin No. 826). Pennsylvania State University Agricultural Experiment Station

BIG [Badan Informasi Geospasial/Indonesian Geospatial Information Agency]. 2024. DEMNAS Digital Elevation Model Nasional. Cibinong (ID): Indonesian Geospatial Information Agency

BPS [Badan Pusat Statistik/Statistic Indonesia. 2023. Kecamatan Sandai Dalam Angka. Badan Pusat Statistik

Bruce RC. 1999. Calcium. In: Peverill KI, Sparrow LA, Reuter DJ. (Eds.) Soil Analysis: An Interpretation Manual. Melbourne (AU): CSIRO Publishing. pp.247–254. https://doi.org/10.1071/9780643101357

Chaganti VN & Culman SW. 2017. Historical perspective of soil balancing theory and identifying knowledge gaps: a review. Crop, Forage & Turfgrass Management. https://doi.org/10.2134/cftm2016.10.0072

Chaganti VN, Culman SW, Herms C, Sprunger CD, Brock C, Soto AL, & Doohan D. 2021. Base cation saturation ratios, soil health, and yield in organic field crops. Agronomy Journal. https://doi.org/10.1002/agj2.20785

Chen X, Chen X, Jiao J, Zhang F, Chen X, Li G, Song Z, Sokolowski E, Imas P, Magen H, Bustan A, He Y, Xie D & Zhang B. 2022. Towards balanced fertilizer management in South China: enhancing Wax Gourd (Benincasa hispida) yield and produce quality. Sustainability, 14(9):5646. https://doi.org/10.3390/su14095646

Cheng Y, Zhang T, Gao W, Kuang Y, Liang Q, Feng H & Galymzhan S. 2024. An excessive K/Na ratio in soil solutions impairs the seedling establishment of sunflower (Helianthus annuus L.) through reducing the leaf Mg concentration and photosynthesis. Agronomy. 14(10):2301. https://doi.org/10.3390/agronomy14102301

Cotrufo MF & Lavallee JM. 2022. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, 172:1–66. https://doi.org/10.1016/bs.agron.2021.11.002

Culman SW, Brock C, Doohan D, Smith DJ, Herms C, Chaganti VN, Kleinhenz M, Sprunger CD, & Spargo J. 2021. Base cation saturation ratios vs. sufficiency level of nutrients: a false dichotomy in practice. Agronomy Journal. https://doi.org/10.1002/agj2.20787

Curtin D & Smillie GW. 1995. Effects of incubation and pH on soil solution and exchangeable cation ratios. Soil Science Society of America Journal, 59(4):1006. https://doi.org/10.2136/sssaj1995.03615995005900040007x

Eckert DJ. 1987. Soil test interpretations: basic cation saturation ratios and sufficiency levels. In Brown L (Ed.) Soil Testing: Sampling, Correlation, Calibration, and Interpretation. Madison (US): SSSA Special Publications. 53-64. https://doi.org/10.2136/sssaspecpub21.c6

Eckert DJ & McLean EO. 1981. Basic cation saturation ratios as a basis for fertilizing and liming agronomic crops: I. Growth Chamber Studies1. Agronomy Journal, 73(5): 795-799. https://doi.org/10.2134/agronj1981.00021962007300050012x

Etienne Parent L, Natale W, & Brunetto G. 2022. Machine learning, compositional and fractal models to diagnose soil quality and plant nutrition. In Aide M & Braden I (Eds.) Soil Science - Emerging Technologies, Global Perspectives and Applications. IntechOpen. https://doi.org/10.5772/intechopen.98896

Eviati, Sulaeman, Herawaty L, Anggria L, Usman, Tantika HE, Prihatini R, Wuningrum P. 2023. Technical Guidance Third Edition. Chemical Analysis of Soil, Plant, Water, and Fertilizer. In Indonesia: Petunjuk Teknis Edisi 3. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Bogor (ID): Balai Pengujian Standar Instrumen Tanah dan Pupuk

Favaretto N, Norton LD, Brouder SM, & Joern BC. 2008. Gypsum amendment and exchangeable calcium and magnesium effects on plant nutrition under conditions of intensive nutrient extraction. Soil Science. 173(2): 108–118. https://doi.org/10.1097/ss.0b013e31815edf72

Fujii K. 2014. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecological Research. 29:371–381. https://doi.org/10.1007/s11284-014-1144-3

Fujii K, Hartono A, Funakawa S, Uemura M, Sukartiningsih & Kosaki T. 2011. Acidification of tropical forest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia. Geoderma, 160(3-4):311–323. https://doi.org/10.1016/j.geoderma.2010.09.027

Fullen MA, Zhi WB & Brandsma R. 1998. A comparison of the texture of grassland and eroded sandy soils from Shropshire, UK. Soil and Tillage Research, 46(3-4):301–305. https://doi.org/10.1016/S0167-1987(98)00096-8.

Garcia A, Crusciol CAC, Rosolem CA, Bossolani JW, Nascimento CAC, McCray JM, Reis AR & Cakmak I. 2022. Potassium-magnesium imbalance causes detrimental effects on growth, starch allocation, and Rubisco activity in sugarcane plants. Plant and Soil, 472(1-2):225–238. https://doi.org/10.1007/s11104-021-05222-2

Ghahramani A, Ishikawa Y & Gomi T. 2011. Slope length effect on sediment and organic litter transport on a steep forested hillslope: Upscaling from plot to hillslope scale. Hydrological Research Letters, 5:16–20. https://doi.org/10.3178/hrl.5.16

Gourley RJC. 1999. Potassium. In: Peverill KI, Sparrow LA, Reuter DJ. (Eds.) Soil Analysis: An Interpretation Manual. Melbourne (AU): CSIRO pp.229–245. https://doi.org/10.1071/9780643101357

Guariguata MR & Ostertag R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3):185–206. https://doi.org/10.1016/s0378-1127(00)00535-1

Haby VA, Russelle MP, & Skogley EO. 1990. Testing Soils for Potassium, Calcium, and Magnesium. In Westermann RL (Ed.): Soil Testing and Plant Analysis. SSSA Book Series. Madison (US): Soil Science Society of America. p.181-227. https://doi.org/10.2136/sssabookser3.3ed.c8

Hartemink AE. 2002. Soil Science in Tropical and Temperate Regions—Some Differences and Similarities. In Sparks DL (Ed.) Advances in Agronomy, 269–292. https://doi.org/10.1016/s0065-2113(02)77016-8

Hao X & Papadopoulos AP. 2003. Effects of calcium and magnesium on growth, fruit yield and quality in a fall greenhouse tomato crop grown on rockwool. Canadian Journal of Plant Science. 83:903–912. https://doi.org/10.4141/P02-140

Hattori D, Kenzo T, Shirahama T, Harada Y, Kendawang JJ, Ninomiya I & Sakurai K. 2019. Degradation of soil nutrients and slow recovery of biomass following shifting cultivation in the heath forests of Sarawak, Malaysia. Forest Ecology and Management, 432:467–477. https://doi.org/10.1016/j.foreco.2018.09.051

Hennig J, Breitfeld HT, Hall R & Nugraha AMS. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48, 292–310. https://doi.org/10.1016/j.gr.2017.05.001

Ho SY, Wasli MEB & Perumal M. 2019. Evaluation of physicochemical properties of sandy-textured soils under smallholder agricultural land use practices in Sarawak, East Malaysia. Applied and Environmental Soil Science. (1):7685451. https://doi.org/10.1155/2019/7685451

Husson F, Josse J, Le S & Mazet J. 2024. Package ‘FactoMineR’. Multivariate Exploratory Data Analysis and Data Mining. Retrieved from https://cran.r-project.org/web/packages/FactoMineR/index.html

Johnston J. 2011. Assessing Soil Fertility; the Importance of Soil Analysis and Its Interpretation. Huntington (GB): Potash Development Association

Juo ASR & Franzluebbers K. 2003. Mineralogy. In Tropical soils: Properties and Management for Sustainable Agriculture (pp. 17–27). Oxford University Press. https://doi.org/10.1093/oso/9780195115987.003.0005

Kasno A, Setyorini D, & Widowati LR. 2021. Cations ratio and its relationship with other soil nutrients of java intensified lowland rice. IOP Conference Series: Earth and Environmental Science. 648(1): https://doi.org/10.1088/1755-1315/648/1/012015

Kassambara A & Mundt F. 2022. Package: 'factoextra'. Extract and Visualize the Results of Multivariate Data Analyses. Retrieved from https://cran.r-project.org/web/packages/factoextra/index.html

Katagiri S, Yamakura T & Lee HS. 1991. Properties of soils in Kerangas forest on sandstone at Bako National Park, East Malaysia. Southeast Asian Studies, 29(1):35–48

Kopittke PM & Menzies NW. 2007. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Science Society of America Journal, 71(2):259. https://doi.org/10.2136/sssaj2006.0186

Li S, Sun S, Yang X, Sun W & Wu Z. 2022. Detrital zircon U-Pb age perspective on the sediment provenance and its geological significance of sandstones in the Lamandau region, SW Borneo, Indonesia. Journal of Oceanology and Limnology, 40(4):496–514. https://doi.org/10.1007/s00343-021-0405-6

Ma Y, Li Z, Tian L, Yang Y, Li W, He Z, Nie X & Liu Y. 2023. Erosion of granite red soil slope and processes of subsurface flow generation, prediction, and simulation. International Journal of Environmental Research and Public Health, 20(3):2104. https://doi.org/10.3390/ijerph20032104

Marschner P & Rengel Z. 2023. Nutrient availability in soils. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (4th ed.). Elsevier. pp.499–522. https://doi.org/10.1016/B978-0-12-819773-8.00003-4

Martin JP & Page AL. 1965. Influence of high and low exchangeable Mg and Ca percentages at different degrees of base saturation on growth and chemical composition of citrus plants. Plant and Soil, 22(1):65–80. https://doi.org/10.1007/bf01377690

McKibben W. 2012. The Art of Balancing Soil Nutrients. Acres USA. Retrieved from https://www.acresusa.com/products/the-art-of-balancing-soil-nutrients

McLean EO. 1977. Contrasting concepts in soil test interpretation: sufficiency levels of available nutrients versus basic cation saturation ratios. In Peck TR, Cope Jr. JT, & Whitney DA. Soil Testing: Correlating and Interpreting the Analytical Results. ASA Special Publication Number 29. Wisconsin (US): American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc. p.39-54. https://doi.org/10.2134/asaspecpub29.c3

McLean EO, Hartwig RC, Eckert DJ, & Triplett GB. 1983. Basic cation saturation ratios as a basis for fertilizing and liming agronomic crops. II. Field studies1. Agronomy Journal, 75(4): 635-639. https://doi.org/10.2134/agronj1983.00021962007500040014x

Olson RA, Anderson FN, Frank KD, Grabouski PH, Rehm GW & Shapiro CA. 1987. Chapter 5: Soil Testing Interpretations: Sufficiency vs. Build-up and Maintenance. In Brown JR (Ed.), Soil Testing: Sampling, Correlation, Calibration, and Interpretation (SSSA Special Publications). https://doi.org/10.2136/sssaspecpub21.c5

Paz CP, Goosem M, Bird M, Preece N, Goosem S, Fensham R & Laurance S. 2016. Soil types influence predictions of soil carbon stock recovery in tropical secondary forests. Forest Ecology and Management, 376:74–83. https://doi.org/10.1016/j.foreco.2016.06.007

Pulunggono HB, Baskoro DPT, Djuniwati S, Putranto S, Nadalia D, Perdana YI & Ulfah M. 2011. Survei Pemetaan Tanah dan Kesesuaian Lahan PT. Agra Jaya Bhaktitama, Kabupaten Ketapang, Kalimantan Barat. Bogor (ID). Departemen Ilmu Tanah dan Sumberdaya Lahan Fakultas Pertanian IPB.

Pulunggono HB, Kartika VW, Nadalia D, Nurazizah LL, & Zulfajrin M. 2022. Evaluating the changes of Ultisol chemical properties and fertility characteristics due to animal manure amelioration. Journal of Degraded and Mining Lands Management, 9(3), 3545–3560. https://doi.org/10.15243/jdmlm.2022.093.3545

Katharine PS & Devakumari SM. 2022. Approaches to plant nutrient management through fertilization in india: then, now and the future. Reviews in Agricultural Science. 10:1–13. https://doi.org/10.7831/ras.10.0_1

Katsuyama M, Ohte N & Kabeya N. 2005. Effects of bedrock permeability on hillslope and riparian groundwater dynamics in a weathered granite catchment. Water Resources Research, 41(1):1–11. https://doi.org/10.1029/2004WR003275

Prasetyo BH & Suharta N. 2004. Properties of low activity clay soils from South Kalimantan. Indonesian Soil and Climate Journal, 22. https://doi.org/10.2017/jti.v0n22.2004.%p

Pulunggono HB, Kartika VW, Nadalia D, Nurazizah LL & Zulfajrin M. 2022. Evaluating the changes of Ultisol chemical properties and fertility characteristics due to animal manure amelioration. Journal of Degraded and Mining Lands Management. 9(3): 3545-3560. doi: https://doi.org/10.15243/jdmlm.2022.093.3545

PPT [Pusat Penelitian Tanah]. 1983. Terms of Reference. Soil Capability Survey. In Indonesia: Terms of Reference. Survey Kapabilitas Tanah. Bogor (ID): Pusat Penelitian Tanah, P3MT. Departemen Pertanian No.59/1983

Qian X, Yu Y, Wang Y, Gan C, Zhang Y & Bin Asis J. 2022. Late Cretaceous nature of SW Borneo and Paleo-Pacific subduction: New insights from the granitoids in the Schwaner Mountains. Lithosphere, 2022(1):8483732. https://doi.org/10.2113/2022/8483732

Rahmi A & Biantary MP. 2014. Karakteristik sifat kimia tanah dan status kesuburan tanah lahan pekarangan dan lahan usaha tani beberapa kampung di Kabupaten Kutai Barat. ZIRAA’AH. 30 (1): 30-36.

Randall GW, Iragavarapu TK, & Evans SD. 1997. Long-term P and K applications: I. effect on soil test incline and decline rates and critical soil test levels. Journal of Production Agriculture. 10(4):565. https://doi.org/10.2134/jpa1997.0565

Rengasamy P & Marchuk A. 2011. Cation ratio of soil structural stability (CROSS). Soil Research, 49(3):280–285. https://doi.org/10.1071/SR10105

Rengasamy P, Tavakkoli E & McDonald GK. 2016. Exchangeable cations and clay dispersion: net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science, 67(5):659–665. https://doi.org/10.1111/ejss.12369.

RePPProT [Regional Physical Planning Program for Transmigration]. 1987. Indonesian Land System Map.

Rustandi E & de Keyser F. 1993. Geological Map of the Ketapang Sheet, Kalimantan. Systematic Geological Map, Indonesia Sheet Ketapang 1414. Geological Research and Development Centre.

Sabudu RS, Zulfajrin M, Staral M, Katili HA & Yatim H. 2021. Soil fertility status and land suitability evaluation for rice crops on former shrimp ponds. Celebes Agricultural. 2(1): 10-36. https://doi.org/10.52045/jca.v2i1.184

Senbayram M, Gransee A, Wahle V & Thiel H. 2015. Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66(12):1219–1229. https://doi.org/10.1071/CP15104

Soto AL. 2018. Effects of soil balancing treatments on soils, vegetable crops and weeds in organically managed farms (thesis, Master Thesis, Ohio State University)

Soto AL, Culman SW, Herms C, Sprunger C, & Doohan D. 2023. Managing soil acidity vs. Soil Ca:Mg ratio: What is more important for crop productivity? Crop, Forage & Turfgrass Management. 9(1):e20210. https://doi.org/10.1002/cft2.20210

Souto AGdL, Pessoa AMdSSá SAd, Sousa NRd, Barros ES, Morais FMdS, Ferreira FN, Silva WAOd, Batista RO, Silva DV, Marcelino RMOdS, Gheyi HR, Lima GSd, Pessoa RMdS & Rêgo MMd. 2024. Potential of Ca-Complexed in amino acid in attenuating salt stress in sour passion fruit seedlings. Plants, 13(20):2912. https://doi.org/10.3390/plants13202912

Souza HA, Parent S, Rozane DE, Amorim DA Modesto VC, Natale W, & Parent LE. 2016. Guava waste to sustain guava (Psidium guajava) agroecosystem: nutrient “balance” concepts. Frontiers in Plant Science, 7:196723. https://doi.org/10.3389/fpls.2016.01252

Sprunger CD, Culman SW, Deiss L, Brock C, Jackson-Smith D. 2021. Which management practices influence soil health in Midwest organic corn systems?. Agronomy Journal. 113: 4201–4219. https://doi.org/10.1002/agj2.20786

Stevens G, Gladbach T, Motavalli P, and Dunn D. 2005. Soil calcium: magnesium ratios and lime recommendations for cotton. The Journal of Cotton Science. 9:65–71

Sutarto, Harjanto A & Kurniawan PPA. 2022. Geology and the effect of boulder size concretion to bauxite laterite deposit quality at Djanra area, Sandai District, Ketapang Regency, West Kalimantan. Journal Techno, 8(2):131–146.

Sulistyaningrum D, Susanawati LD & Suharto B. 2014. Pengaruh karakteristik fisika kimia tanah terhadap nilai indeks erodibilitas tanah dan upaya konservasi lahan. Jurnal Sumberdaya Alam dan Lingkungan. 1(2): 55-62.

Takamoto A, Takahashi T & Togami K. 2021. Effect of changes in the soil calcium-to-magnesium ratio by calcium application on soybeans (Glycine max (L.) Merr.) growth. Soil Science and Plant Nutrition, 67(2):139–149. https://doi.org/10.1080/00380768.2021.1872350

Tufaila M & Alam S. 2014. Krakteristik tanah dan evaluasi lahan untuk pengembangan tanaman padi sawah di Kecamatan Oheo Kabupaten Konawe Utara. Jurnal Agriplus. 24(2): 184-190.

van Biljon JJ, Fouche DS, & Botha ADP. 2007. An evaluation of the basic cation saturation ratio concept in sandy soils of the Free State Province, South Africa. South African Journal of Plant and Soil. 24(4):228-232. https://doi.org/10.1080/02571862.2007.10634814

van Hattum MWA, Hall R, Pickard AL & Nichols GJ. 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76:266–282. https://doi.org/10.1016/j.jseaes.2013.02.033

Villa PM, Martins SV, de Oliveira Neto SN, Rodrigues AC, Martorano LG, Monsanto LD, Cancio NM & Gastauer M. 2018. Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecology and Management, 430:312–320. https://doi.org/10.1016/j.foreco.2018.08.014

Wacal C, Ogata N, Basalirwa D, Sasagawa D, Ishigaki T, Handa T, Kato M, Tenywa MM, Masunaga T, Yamamoto S & Nishihara E. 2019a. Imbalanced soil chemical properties and mineral nutrition in relation to growth and yield decline of sesame on different continuously cropped upland fields converted paddy. Agronomy, 9:184. https://doi.org/10.3390/agronomy9040184

Wacal C, Ogata N, Basalirwa D, Sasagawa D, Masunaga T, Yamamoto S & Nishihara E. 2019b. Growth and K Nutrition of sesame (Sesamum indicum L.) seedlings as affected by balancing soil exchangeable cations Ca, Mg, and K of continuously monocropped soil from upland fields converted paddy. Agronomy, 9:819. https://doi.org/10.3390/agronomy9120819

Walkley A & Black IA. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37(1):29-37

Wang S, Zuo Q, Cao Q, Wang P, Yang B, Zhao S, Cao R & Chen M. 2021. Acceleration of soil N₂O flux and nitrogen transformation during tropical secondary forest succession after slash-and-burn agriculture. Soil and Tillage Research, 208:104868. https://doi.org/10.1016/j.still.2020.104868

Welte E & Werner W. 1963. Potassium-magnesium antagonism in soils and crops. Journal of the Science of Food and Agriculture, 14(3):182–186. https://doi.org/10.1002/jsfa.2740140309

Wischmeier WH & Mannering JV. 1969. Relation of soil properties to its erodibility1. Soil Science Society of America Journal, 33(1):131. https://doi.org/10.2136/sssaj1969.03615995003300010035x

Yang M, Zhou D, Hang H, Chen S, Liu H, Su J, Lv H, Jia H & Zhao G. 2024. Effects of balancing exchangeable cations ca, mg, and k on the growth of tomato seedlings (Solanum lycopersicum L.) based on increased soil cation exchange capacity. Agronomy, 14(3):629. https://doi.org/10.3390/agronomy14030629

Zhang X, Liu X, An R & Li X. 2023. Site observations of weathered granitic soils subjected to cementation and partial drainage using SCPTU. Journal of Rock Mechanics and Geotechnical Engineering, 15(4):984–996. https://doi.org/10.1016/j.jrmge.2022.06.014

Downloads

Published

2024-12-26

How to Cite

Pulunggono, H. B., Pratiwi, D., Zulfajrin, M., Nurazizah, L. L., Chahyahusna, A., & Iskandar. (2024). Comparative Analysis of Soil Fertility in Sandy Soils along a Toposequence Transect in Sandai, West Kalimantan. CELEBES Agricultural, 5(1), 1–24. https://doi.org/10.52045/jca.v5i1.779

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)