Potential of Endophytic Bacteria in Controlling The Red Jabon Leaf Spot Pathogens In Vitro
https://doi.org/10.52045/jca.v4i1.416
Keywords:
antibiosis, physiological characterization, biological control, Pestalotia sp., Rhizoctonia sp.Abstract
Plant pathogens pose a significant challenge to the cultivation of red Jabon (Anthocephalus macrophyllus) seedlings. Notably, the fungi Rhizoctonia sp. and Pestalotia sp. are responsible for the destructive red leaf spot disease on Jabon leaves. To combat these fungal pathogens, the use of endophytic bacteria has emerged as a potential alternative. Endophytic bacteria can be isolated from various plant sources, although their effectiveness in controlling forest plant pathogens like Jabon has not been thoroughly explored. This study aimed to assess the potential of endophytic bacterial isolates obtained from Pteris ensiformis (Isolates APE15, APE22, APE33, and APE35) in controlling the growth of Rhizoctonia sp. and Pestalotia sp. through in vitro experiments. The antibiosis activity of the endophytic bacteria against the pathogenic fungi was evaluated using the dual culture method on PDA media. The results revealed that among the four endophytic bacterial isolates, APE35 exhibited the highest inhibitory effect on Rhizoctonia sp. (86.79%) and Pestalotia sp. (67.5%), while isolate APE22 only inhibited the growth of Pestalotia sp. (55%). In contrast, isolates APE15 and APE33 were unable to suppress either fungus. The antibiosis activity of APE35 and APE22 resulted in abnormal hyphal growth of the pathogenic fungi, characterized by shriveled, bent, dark-colored, and coiled hyphae. Physiological characterization of the endophytic bacteria revealed their ability to produce protease, cellulase, catalase, and phosphate-dissolving enzymes. Additionally, these bacteria exhibited a Gram-positive nature. This study provides valuable insights into the potential of endophytic bacterial isolates from P. ensiformis (APE35 and APE22) as biological control agents for Rhizoctonia sp. and Pestalotia sp., the causative agents of red Jabon leaf spot disease.
Downloads
References
Abo-Elyousr KAM, Abdel-Rahim IR, Almasoudi NM & Alghamdi SA. 2021. Native endophytic Pseudomonas putida as a biocontrol agent against common bean rust caused by Uromyces appendiculatus. Journal of Fungi, 7(9):745. https://doi.org/10.3390/jof7090745
Aisah AR, Soekarno BPW & Achmad. 2015. Isolation and identification of fungi associated with dieback disease of jabon seedling (Anthocephalus cadamba (Roxb.) Miq). Jurnal Penelitian Hutan Tanaman, 12(3):153-163. https://doi.org/10.20886/jpht.2015.12.3.153-163
Ali MA, Ren H, Ahmed T, Luo J, An Q, Qi X, & Li B. 2020. Antifungal effects of rhizospheric Bacillus species against bayberry twig blight pathogen Pestalotiopsis versicolor. Agronomy, 10(11):1811. https://doi.org/10.3390/agronomy10111811
Arios NL, Suryanto D, Nurtjahja K & Munir E. 2014. Asai kemampuan bakteri endofit dari kacang tanah dalam menghambat pertumbuhan Sclerotium sp. Pada kecambah kacang tanah. Jurnal Hama dan Penyakit Tumbuhan Tropika, 14(2):178-186. https://doi.org/10.23960/j.hptt.214178-186
Arlorio M, Ludwig A, Boller T & Bonfante P. 1992. Inhibition of fungal growth by plant chitinases and β-1,3-glucanases. Protoplasma, 171(1-2):34–43. https://doi.org/10.1007/bf01379278
Asmoro PP & Munif A. 2020. Bakteri endofit dari tumbuhan paku-pakuan sebagai agen hayati Rhizoctonia solani dan pemacu pertumbuhan tanaman padi. Jurnal Fitopatologi Indonesia, 15(6):239-247. https://doi.org/10.14692/jfi.15.6.239-247
Baehaki A & Budiman A. 2011. Isolasi dan karakterisasi protease dari bakteri tanah rawa Indralaya. Jurnal Teknologi dan Industri Pangan. 22(1):37-42. https://journal.ipb.ac.id/index.php/jtip/article/view/3394
Bieber B, Nüske J, Ritzau M & Gräfe U. 1998. Alnumycin a new naphthoquinone antibiotic produced by an endophytic Streptomyces sp. The Journal of antibiotics, 51(3):381–382. https://doi.org/10.7164/antibiotics.51.381
Brader G, Compant S, Mitter B, Trognitz F & Sessitsch A. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27:30-37. https://doi.org/10.1016/j.copbio.2013.09.012
Brent KJ & Hollomon DW. 1998. Fungicide Resistance: The Assessment of Risk. FRAC Monograph, 2 CropLife International, Brussels, Belgium.
Caldwell BA. 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49(6):637-644. https://doi.org/10.1016/j.pedobi.2005.06.003
Castric PA. 1975. Hydrogen cyanide: A secondary metabolite of Pseudomonas aeruginosa. Canadian Journal of Microbiology, 21: 613-618. https://doi.org/10.1139/m75-088
Contesini FJ, Melo RR de & Sato HH. 2017. An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3):321–334. https://doi.org/10.1080/07388551.2017.1354354
Compant S, Duffy B, Nowak J, Clement C & Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and prospects. Applied and Environmental Microbiology, 71(9):4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
Damiri N, Pratama Y, Febbiyanti TR, Rahim SE, Astuti DT & Purwanti Y. 2022. Pestalotiopsis sp. infection causes leaf fall disease of new arrivals in several clones of rubber plants. Biodiversitas Journal of Biological Diversity, 23(8):3943-3949. https://doi.org/10.13057/biodiv/d230811
Digra S & Nonzom S. 2023. An insight into endophytic antimicrobial compounds: an updated analysis. Plant Biotechnology Reports, 1–31. https://doi.org/10.1007/s11816-023-00824-x
Duan JL, Li XJ, Gao JM, Wang DS, Yan Y & Xue QH. 2013. Isolation and identification of endophytic bacteria from root tissues of Salvia militiorrhiza Bge. and determination of their bioactivities. Annals of Microbiology, 63(4):1501-1512. https://doi.org/10.1007/s13213-013-0614-0
Ebrahimi-Zarandi M, Bonjar GHS, Riseh RS, El-Shetehy M, Saadoun I, Barka EA. 2021. Exploring two Streptomyces species to control Rhizoctonia solani in tomato. Agronomy, 11(7):1384. https://doi.org/10.3390/agronomy11071384
El-Deeb B, Fayez K & Gherbawy Y. 2013. Isolation and characterization of endophytic bacteria from Plectranthus teneiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of Plant Interactions, 8(1):56-64. https://doi.org/10.1080/17429145.2012.680077
Eris D, Munif, A, Soekarno, BP & Purwantara A. 2017. Selection and potency of endophytic bacteria from Arecaceae as biocontrol agents of Pestalotiopsis sp. causing leaf spot diseae on kopyor coconut (Cocos nucifera). Menara Perkebunan, 85(1). https://doi.org/10.22302/iribb.jur.mp.v85i1.235
Fokkema NJ, Bond JH & Fribourg HA. 1959. Methods for Studying Soil Microflora Plant Disease Relationship. Minneapolis (US): Burgess Publ Co.
Ghose TK. 1987. Measurement of cellulase activities. Pure and Applied Chemistry, 592:257-268. https://doi.org/10.1351/pac198759020257
Hariprasad P, Divakara S & Niranjana S. 2011. Isolation and characterization of chitinolytic bacteria for the management of Fusarium wilt in tomato. Crop Protection, 30(12):1606- 1612. https://doi.org/10.1016/j.cropro.2011.02.032
Hasegawa S, Meguro A, Shimizu M, Nishimura T & Kunoh H. 2006. Endophytic actinomycetes and their interactions with host plants. Actinomycetologica, 20(2):72–81. https://doi.org/10.3209/saj.20.72
He D-C, He M-H, Amalin DM, Liu W, Alvindia DG & Zhan J. 2021. Biological control of plant diseases: an evolutionary and eco-economic consideration. Pathogens, 10:1311. https://doi.org/10.3390/pathogens10101311
Herliana EN, Sakbani L, Herdiyeni H & Munif A. 2020. Identification fungi pathogen causes of disease in red leaf Jabon (Anthocephalus macrophyllus (Roxb.) Havil). Jurnal Silvikultur Tropika. 11(03):154-162. https://doi.org/10.29244/j-siltrop.11.3.154-162
Herliana EN, Oktavianto P & Siregar UJ. 2022. Identification and characterization of Pestalotiopsis spp. causing leaf spot and leaf blight on Jabon (Neolamarckia spp.) in Indonesia. Biodiversitas Journal of Biological Diversity, 23(12):6547-6556. https://doi.org/10.13057/biodiv/d231253
Hidayah HN & Anggraeni I. 2015. Identification of causes of red leaf spot on red jabon (Anthocephalus macrophyllus (Roxb.) Havil) seeds in Kima Atas Permanent Nursery, Forestry Research Institute of Manado. Jurnal Wasian, 2(2):73-78. https://doi.org/10.20886/jwas.v2i2.877
Indhasari F & Azisah N. 2021. Control of leaf spot disease on seeds of red Jabon (Anthocephlus macrophyllus). Pangale Journal of Forestry and Environment, 1(1):25-35. https://doi.org/10.31605/forestry.v1i1.1398
Istikorini Y & Sari OY. 2020. The cause of sengon (Paraserianthes falcataria) damping-off disease: survey and identification in permanent nursery, IPB University. Jurnal Sylva Lestari, 8(1):32–41. cc10.23960/jsl1832-41
Jalgaonwala RE & Mahajan RT. 2011. Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. International Journal of Agricultural Technology, 7(6):1733-1741. https://www.thaiscience.info/Journals/Article/IJAT/10841194.pdf
Kim SH, Lee Y, Balaraju K, Jeon Y. 2023. Evaluation of Trichoderma atroviride and Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea. Frontier in Plant Science, 14:1201875. https://doi.org/10.3389/fpls.2023.1201875
Kobayashi T & de Guzman E. 1988. Monograph of tree diseases in the Philippines with taxonomic notes on their associated microorganisms. Bulletin of the Forestry and Forest Products Research Institute. 351:99-200. http://www.ffpri.affrc.go.jp/labs/kanko/351-3.pdf
Kuhad RC, Gupta R & Singh A. 2011. Microbial cellulose and their industrial applications. Enzyme Research, 280696:1-10. https://doi.org/10.4061/2011/280696
Laode Mpapa B & Romadhon S. 2015. Influence of organic pesticides and interval spraying against pests on red Jabon seed (Anthocephalus macrophyllus). Jurnal Galung Tropika, 4(3): 131-136. https://doi.org/10.31850/jgt.v4i3.110
Meguro A, Hasegawa S, Shimizu M, Nishimura T & Kunoh H. 2004. Induction of disease resistance in tissue-cultured seedlings of mountain laurel after treatment with Streptomyces padanus AOK-30. Actinomycetologica, 18:48–53. https://doi.org/10.3209/saj.18_48
Muthu Narayanan M, Ahmad N, Shivanand P & Metali F. 2022. The role of endophytes in combating fungal- and bacterial-induced stress in plants. Molecules, 27:6549. https://doi.org/10.3390/molecules27196549
Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V & Kaur J. 2022. Major biological control strategies for plant pathogens. Pathogens, 11:273. https://doi.org/10.3390/pathogens11020273
Pusztahelyi T. 2018. Chitin and chitin-related compounds in plant-fungal interactions. Mycology, 9(3):189–201. https://doi.org/10.1080/21501203.2018.1473299
Rangkuti EE, Suryanto D, Nurtjahja K & Munir E. 2014. Kemampuan bakteri endofit tanaman semangka dalam menekan perkembang penyakit bercak daun yang disebabkan oleh jamur Colletotrichum sp. Jurnal Hama dan Penyakit Tumbuhan Tropika, 14(2):170-177. https://doi.org/10.23960/j.hptt.214170-177
Reiner K. 2010. Catalase Test Protocol. American Society for Microbiology. https://asm.org/protocols/catalase-test-protocol
Rustandi B & Siti Fatimah DD. 2015. In Indonesia: Perancangan sistem pakar hama dan penyakit pohon jabon berbasis android. Jurnal Algoritma, 12(2):236-244. https://doi.org/10.33364/algoritma/v.12-2.236
Sarker A, Talukder NM & Islam MT. 2014. Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Science Today, 1(2):86-93. Doi.org/10.14719/pst.2014.1.2.25. https://doi.org/10.14719/pst.2014.1.2.25
Sakbani L. 2017. Identifikasi dan uji postulat Koch cendawan penyebab penyakit daun pada Jabon merah (Anthocephalus macrophyllus (Roxb.) Havil) [Skripsi]. Bogor (ID): Institut Pertanian Bogor
Sasaki T., Igarashi Y, Saito N & Furumai T. 2001. Cedarmycins A and B, new antimicrobial antibiotics from Streptomyces sp. TP-A0456. Actinomycetologica, 54:567–572. https://doi.org/10.3209/saj.20.72
Shimizu M, Fujita N, Nakagawa Y, Nishimura T, Furumai T, Igarashi Y, Onaka H, Yoshida R & Kunoh H. 2001a. Disease resistance of tissue-cultured seedlings of rhododendron after treatment with Streptomyces sp. R-5. Journal of General Plant Pathology, 67:325–332. https://doi.org/10.1007/PL00013040
Shimizu M, Furumai T, Igarashi Y, Onaka H, Nishimura T, Yoshida R & Kunoh H. 2001b. Association of induced disease resistance of rhododendron seedlings with inoculation of Streptomyces sp. R-5 and treatment with actinomycin D and amphotericin B to the tissue-culture medium. The Journal of Antibiotics, 54(6):501–505. https://doi.org/10.7164/antibiotics.54.501
Shimizu M, Igarashi Y, Furumai T, Onaka H & Kunoh H. 2004. Identification of endophytic Streptomyces sp. R-5 and analysis of its antimicrobial metabolites. Journal of General Plant Pathology, 70:66–68. https://doi.org/10.1007/s10327-003-0082-7
Singh M, Srivastava M, Kumar A, Singh AK & Pandey KD. 2020. Endophytic bacteria in plant disease management. Microbial Endophytes, 61–89. https://doi.org/10.1016/b978-0-12-818734-0.00004-8
Siva M, Sreeja SJ, Thara SS, Heera G & Anith KN. 2023. Endophytic Bacillus spp. suppress Rhizoctonia solani web blight of bush cowpea. Rhizosphere, 25:100682. https://doi.org/10.1016/j.rhisph.2023.100682
Suryanto D, Yasmin N, Munir E & Bungsu A. 2018. An assay on endophytic bacteria from corn and paddy to control damping-off of Rhizoctonia solani in corn seedling. IOP Conf. Series: Journal of Physics, 1116:052068. https://doi.org/10.1088/1742-6596/1116/5/052068
Tilak VBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK & Johri BN. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science, 89(1):136-150. https://www.currentscience.ac.in/Volumes/89/01/0136.pdf
Vijayalakshmi R, Kairunnisa K, Sivvaswamy SN, Dharan SS & Natarajan S. 2016. Enzyme production and antimicrobial activity of endophytic bacteria isolated from medicinal plants. Indian Journal of Science and Technology, 9(14):1-8. https://doi.org/10.17485/ijst/2016/v9i14/83143
Wani PA, Zaidi A, Khan AA & Khan MS. 2005. Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizopheric microorganisms. Annals of Plant Protection Sciences, 13:139-144.
Wilson W. 2014. Bakteri endofit tanaman purwoceng (Pimpinella pruatjan Molk.) , berdasarkan karakter morfologis, biokimia, dan molekuler [Tesis]. Yogyakarta (ID): Universitas Gadjah Mada.
Wisanggeni GA, Suryanti S & Joko T. 2023. The potential of Bacillus subtilis subsp. subtilis RJ09 as a biological control agent against leaf spot diseases on clove. Jurnal Fitopatologi Indonesia, 19(3):118-126. https://doi.org/10.14692/jfi.19.3.118-126
Won S-J, Moon J-H, Ajuna HB, Choi S-I, Maung CEH, Lee S & Ahn YS. 2021. Biological control of leaf blight disease caused by Pestalotiopsis maculans and growth promotion of Quercus acutissima Carruth container seedlings using Bacillus velezensis CE 100. International Journal of Molecular Sciences, 22(20):11296. https://doi.org/10.3390/ijms222011296
Xie H, Feng X, Wang M, Wan Y., Kumar Awasthi M & Xu P. 2020. Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered, 11(1):1001–1015. https://doi.org/10.1080/21655979.2020.1816788
Yadav G, Srivastva R & Gupta P. 2021. Endophytes and their applications as biofertilizers. In: Bhatt P, Gangola S, Udayanga D, Kumar G. (Eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_7
Zheng T, Liu L, Nie Q, Hsiang T, Sun Z & Zhou Y. 2021. Isolation, identification and biocontrol mechanisms of endophytic bacterium D61-A from Fraxinus hupehensis against Rhizoctonia solani. Biological Control, 158:104621. https://doi.org/10.1016/j.biocontrol.2021.104621
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Elis Nina Herliyana, Prayogo Probo Asmoro, Abdul Munif
This work is licensed under a Creative Commons Attribution 4.0 International License.