Trophic Interaction of Spodoptera frugiperda and their Egg Parasitoids in Agricultural Landscape

https://doi.org/10.52045/jca.v4i2.717

Authors

  • Daniel Kalinyo Department of Agrotechnology, Faculty of Agriculture, Tompotika Luwuk University, Banggai, 94711, Central Sulawesi, Indonesia
  • Andrianto Kupepe Department of Agrotechnology, Faculty of Agriculture, Tompotika Luwuk University, Banggai, 94711, Central Sulawesi, Indonesia
  • Dendi Ferdianto Department of Agrotechnology, Faculty of Agriculture, Tompotika Luwuk University, Banggai, 94711, Central Sulawesi, Indonesia
  • Ismail Djamaludin Department of Agribusiness, Faculty of Agriculture, Tompotika Luwuk University, Banggai, 94711, Central Sulawesi, Indonesia
  • Hiksa Maulana Saputra Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Mihwan Sataral Department of Agrotechnology, Faculty of Agriculture, Tompotika Luwuk University, Banggai, 94711, Central Sulawesi, Indonesia

Keywords:

fall armyworm, food-webs metrics, landscape composition, maize

Abstract

Trophic interactions between Spodoptera frugiperda and its parasitoids are crucial for effective biological control strategies. Understanding these interactions is essential for developing methods that mitigate pest impacts on crops while preserving agroecosystem balance. This study aims to (a) evaluate the interactions between S. frugiperda and its parasitoids, (b) explore the relationship between landscape composition and parasitism levels of S. frugiperda, and (c) analyze how landscape composition influences the food web metrics of S. frugiperda and its parasitoids. The findings identified three egg parasitoid species—Telenomus sp1, Telenomus sp2, and Trichogramma sp—parasitizing S. frugiperda, with Telenomus sp1 emerging as the dominant parasitoid and a potential biological control agent. Notably, landscape composition did not significantly affect the parasitization rate of S. frugiperda eggs. However, the age of maize plants positively influenced the parasitization rate, indicating that older plants may enhance the parasitization of S. frugiperda eggs. Landscape composition, particularly in agricultural contexts, positively influenced Shannon diversity while negatively affecting interaction evenness. In contrast, semi-natural habitats enhanced interaction evenness. These findings highlight the significance of landscape composition in understanding the complexity of the S. frugiperda-parasitoid food web, providing valuable insights for developing pest control strategies for S. frugiperda and conserving natural enemies.

Downloads

Download data is not yet available.

References

Barton K. 2004. Multi-Model Inference. 1-79. https://cran.r-project.org/web/packages/MuMIn/index.html

Breiman L. 2001. Random forests. Machine Learning. 45:5-32. https://doi.org/10.1023/A:1010933404324

Brooks M, Bolker B, Kristensen K, Maechler M, Magnusson A, Mcgillycuddy M, Skaug H, Nielsen A, Berg C, Van Bentham K, et al. 2024. Generalized Linear Mixed Models using Template Model Builder. 1–50. https://cran.r-project.org/web/packages/glmmTMB/index.html

Bukovinszky T, van Veen FF, Jongema Y & Dicke M. 2008. Direct and indirect effects of resource quality on food web structure. Science. 319(5864):804-807. https://doi.org/10.1126/science.1148310

Calizza E, Costantini ML & Rossi L. 2015. Effect of multiple disturbances on food web vulnerability to biodiversity loss in detritus-based systems. Ecosphere. 6(7):1–20. https://doi.org/10.1890/ES14-00489.1

de Almeida GDSS, Loiácono MS, Margaría CB & Ferreira Monteiro R. 2015. A new species of Telenomus Haliday (Hymenoptera: Platygastridae) egg parasitoid of Parides ascanius (Cramer) (Lepidoptera: Papilionidae), a threatened species from Brazil. Zootaxa. 3986(3):387–392. http://dx.doi.org/10.11646/zootaxa.3986.3.7

Dong Z, Men X, Liu S & Zhang Z. 2019. Food web structure of parasitoids in greenhouses is affected by surrounding landscape at different spatial scales. Scientific Reports. 9(1):8442. https://doi.org/10.1038/s41598-019-44857-1

Dormann CF, Gruber B & Fründ J. 2008. Introducing the bipartite package: Analysing ecological networks. R News. 8(2):8–11. https://doi.org/10.1159/000265935

Dormann CF, Fruend J, Beckett S, Devoto M, Felix GMF, Iriondo JM, Opsahl T, Pinherio RBP, Strauss R & Vazquez DP. 2023. Visualising Bipartite Networks and Calculating Some (Ecological) Indices. https://cran.r-project.org/web/packages/bipartite/index.html

Goulet H & Huber JT. (Eds.). 1993. Hymenoptera of the world: An identification guide to families (pp. vii+-668)

Haan NL, Zhang Y & Landis DA. 2020. Predicting landscape configuration effects on agricultural pest suppression. Trends in Ecology & Evolution. 35(2):175-186. https://doi.org/10.1016/j.tree.2019.10.003

Hawro V, Ceryngier P, Kowalska A & Ulrich W. 2017. Landscape structure and agricultural intensification are weak predictors of host range and parasitism rate of cereal aphids. Ecological Research. 32:109-115. https://doi.org/10.1007/s11284-016-1419-y

Henneman ML & Memmott J. 2001. Infiltration of a Hawaiian community by introduced biological control agents. Science. 293(5533):1314-1316. https://doi.org/10.1126/science.1060788

Herlinda S, Suwandi S, Irsan C, Adrian R, Fawwazi F & Akbar F. 2023. Species diversity and abundance of parasitoids of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) from South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 24(11):6184-6190. https://doi.org/10.13057/biodiv/d241140

Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ & Didham RK. 2012. Agricultural intensification drives landscape‐context effects on host–parasitoid interactions in agroecosystems. Journal of Applied Ecology. 49(3):706-714. https://doi.org/10.1111/j.1365-2664.2012.02130.x

Kaartinen R & Roslin T. 2011. Shrinking by numbers: Landscape context affects the species composition but not the quantitative structure of local food webs. Journal of Animal Ecology. 80(3):622–631. https://doi.org/10.1111/j.1365-2656.2011.01811.x

Kaplan I, Carrillo J, Garvey M & Ode PJ. 2016. Indirect plant–parasitoid interactions mediated by changes in herbivore physiology. Current Opinion in Insect Science. 14:112-119. https://doi.org/10.1016/j.cois.2016.03.004

Keerthi MC, Suroshe SS, Doddachowdappa S, Shivakumara KT, Mahesha HS, Rana VS, Gupta A, Murukesan A, Casinin R, Elansary HO & Shakil NA. 2023. Bio-intensive tactics for the management of invasive fall armyworm for organic maize production. Plants. 12:1–18. https://doi.org/10.3390/plants12030685

Leppänen SA, Altenhofer E, Liston AD & Nyman T. 2013. Ecological versus phylogenetic determinants of trophic associations in a plant–leafminer–parasitoid food web. Evolution. 67(5):1493-1502. https://doi.org/10.1111/evo.12028

Lewis OT, Memmott J, Lasalle J, Lyal CH, Whitefoord C & Godfray HCJ. 2002. Structure of a diverse tropical forest insect–parasitoid community. Journal of Animal Ecology. 71(5): 855-873. https://doi.org/10.1046/j.1365-2656.2002.00651.x

Li TH, de Freitas Bueno A, Desneux N, Zhang L, Wang Z, Dong H, Wang S & Zang LS. 2023. Current status of the biological control of the fall armyworm Spodoptera frugiperda by egg parasitoids. Journal of Pest Science. 96(4):1345-1363. https://doi.org/10.1007/s10340-023-01639-z

Lohaus K, Vidal S & Thies C. 2013. Farming practices change food web structures in cereal aphid–parasitoid–hyperparasitoid communities. Oecologia. 171:249-259. https://doi.org/10.1007/s00442-012-2387-8

Midega CA, Jonsson M, Khan ZR & Ekbom B. 2014. Effects of landscape complexity and habitat management on stemborer colonization, parasitism and damage to maize. Agriculture, Ecosystems & Environment. 188:289-293. https://doi.org/10.1016/j.agee.2014.02.028

Morris RJ, Lewis OT & Godfray HCJ. 2004. Experimental evidence for apparent competition in a tropical forest food web. Nature. 428(6980):310-313. https://doi.org/10.1038/nature02394

Murakami M, Hirao T & Kasei A. 2008. Effects of habitat configuration on host–parasitoid food web structure. Ecological Research. 23(6):1039–1049. https://doi.org/10.1007/S11284-008-0478-0

Nagaraja H & Nagarkatti S. 1969. Three new species of Trichogramma [Hymenoptera: Trichogrammatidae] from India. Entomophaga. 14(4):393–400. https://doi.org/10.1007/BF02390544

Navik O, Yele Y, Kedar SC & Sushil SN. 2023. Biological control of fall armyworm Spodoptera frugiperda (JE Smith) using egg parasitoids, Trichogramma species (Hymenoptera: Trichogrammatidae): A review. Egyptian Journal of Biological Pest Control. 33(118):1–17. https://doi.org/10.1186/s41938-023-00759-z

Nixon GEJ. 1937. Some Asiatic Telenominae (Hymenoptera: Proctotrupoidea). Annals and Magazine of Natural History. 20(118):444–475. https://doi.org/10.1080/00222933708655367

Nugraha MN, Buchori D, Nurmansyah A & Rizali A. 2014. Interaksi tropik antara hama dan parasitoid pada pertanaman sayuran: faktor pembentuk dan implikasinya terhadap keefektifan parasitoid. Jurnal Entomologi Indonesia. 11(2):103-103. https://doi.org/10.5994/JEI.11.2.103

Nurkomar I, Putra ILI, Buchori D & Setiawan F. 2024. Association of a Global Invasive Pest Spodoptera frugiperda (Lepidoptera: Noctuidae) with Local Parasitoids: Prospects for a New Approach in Selecting Biological Control Agents. Insects. 15(3):205. https://doi.org/10.3390/insects15030205

Pedroso BM, Morales-Silva T & Faria LDB. 2021. Dominant parasitoid species diminishes food web structural complexity and function. Journal of Insect Conservation. 25:671-682. https://doi.org/10.1007/s10841-021-00336-5

R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. https://www.r-project.org/

SariA, BuchoriD & Nurkomar I. 2020. The potential of Telenomus remus Nixon (Hymenoptera: Scelinoidae) as biocontrol agent for the new fall armyworm S. frugiperda (Lepidoptera: Noctuidae) in Indonesia. Planta Tropika. 8(2):69-74. https://doi.org/10.18196/pt.2020.116.69-74

Schindler B, Gavish-Regev E & Keasar T. 2022. Parasitoid wasp community dynamics in vineyards following insecticide application. Frontiers in Environmental Science. 9:785669. https://doi.org/10.3389/fenvs.2021.785669

Susiawan E & Yuliarti N. 2006. Distribusi dan kelimpahan parasitoid telur, Telenomus spp. di Sumatera Barat: Status dan potensinya sebagai agens pengendali hayati. Jurnal Entomologi Indonesia. 3(2):104-104. https://doi.org/10.5994/jei.3.2.104

Syahidah T, Rizali A, Prasetyo LB & Buchori D. 2021. Composition of tropical agricultural landscape alters the structure of host-parasitoid food webs. Heliyon. 7(7):1-8. https://doi.org/10.1016/j.heliyon.2021.e07625

Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S & Vidal S. 2007. Conservation biological control and enemy diversity on a landscape scale. Biological Control. 43(3):294-309. https://doi.org/10.1016/j.biocontrol.2007.08.006

Tylianakis JM, Laliberté E, Nielsen A & Bascompte J. 2010. Conservation of species interaction networks. Biological Conservation. 143(10):2270–2279. https://doi.org/10.1016/j.biocon.2009.12.004

Tylianakis JM, Tscharntke T & Lewis OT. 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature. 445(7124):202-205. https://doi.org/10.1038/nature05429

Ulina ES, Rizali A, Manuwoto S, Pudjianto & Buchori D. 2019. Does composition of tropical agricultural landscape affect parasitoid diversity and their host–parasitoid interactions?. Agricultural and Forest Entomology. 21(3):318-325. https://doi.org/10.1111/afe.12334

Yang F, Liu B, Zhu Y, Wyckhuys KA, van der Werf W & Lu Y. 2021. Species diversity and food web structure jointly shape natural biological control in agricultural landscapes. Communications Biology. 4(1):979. https://doi.org/10.1038/s42003-021-02509-z

Zhang Y, Zhao MC, Cheng J, Liu S & Yuan HB. 2020. Population dynamics and species composition of maize field parasitoids attacking aphids in northeastern China. PloS one. 15(12):e0241530. https://doi.org/10.1371/journal.pone.0241530

Downloads

Published

2024-12-24

How to Cite

Kalinyo, D., Andrianto Kupepe, Dendi Ferdianto, Ismail Djamaludin, Hiksa Maulana Saputra, & Mihwan Sataral. (2024). Trophic Interaction of Spodoptera frugiperda and their Egg Parasitoids in Agricultural Landscape. CELEBES Agricultural, 4(2), 88–100. https://doi.org/10.52045/jca.v4i2.717

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.