Driving Mechanism Controlling Cultivated Tropical Peat Physicochemical Characteristics and Stoichiometry: Case Study of a Microtopographical Sequence

https://doi.org/10.52045/jca.v4i1.588

Authors

  • Heru Bagus Pulunggono Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Othari Gusman Bachelor of Agriculture, Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Moh Zulfajrin Researcher at Soil Chemistry and Fertility Laboratory, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Lina Lathifah Nurazizah Researcher at Soil Chemistry and Fertility Laboratory, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia
  • Syaiful Anwar Department of Soil Science, Faculty of Agriculture, IPB University, Bogor, 16680, West Java, Indonesia

Keywords:

micro-topo-hydrosequence transect, oil palm, peat properties, stoichiometry

Abstract

Contrasting to the large body of knowledge documenting peatland characteristics and their trends across major rivers, limited study was found in studying peat physicochemical and stoichiometry variability at the drained and cultivated site across microtopographical sequence. This study aimed to investigate peat physicochemical properties and stoichiometry in an old oil palm plantation/OPP in North Sumatra Province, Indonesia, across a 3.1 km of a topo-hydrosequence transect perpendicular to the Leidong River and raised hummock. 20 peat cores (0-50 and 50-100 cm depth) from 10 sampling points were collected to determine their physicochemical properties and stoichiometry and analyze the driving mechanisms controlling them. This current study suggested that the long-term drainage and cultivation practices may partially alter the trends and patterns of peat’s physicochemical properties. It was indicated by diverse trends, in which several peat properties behave oppositely against their natural patterns. The soil’s chemical characteristics and stoichiometry throughout 0-100 cm depth were considered homogeneous, which exhibited oppositely with peat physical parameters. The prominent properties and stoichiometry mainly controlled peat variances were bulk density, pH, total N, available P, C:N, and N:K. Flooding experience and distance from the river were the driving mechanisms controlling peat properties and stoichiometry at the study site. This study’s results demonstrated peat physicochemical characteristics and stoichiometry trends that were observed at microtopographical features with a relatively small tributary may resemble those studies representing the extensive landscapes

Downloads

Download data is not yet available.

References

Anda M, Ritung S, Suryani E, Hikmat M, Yatno E, Mulyani A, & Subandiono RE. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402:115235. https://doi.org/10.1016/j.geoderma.2021.115235

Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J & Rafiastanto A. 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences, 7(11): 3403–3419. https://doi.org/10.5194/bg-7-3403-2010

BIOREF [The Research Center of Biodiversity and Tropical Forest Rehabilitation]. 2021. Laporan Akhir Survei Inventarisasi Karakteristik Ekosistem Gambut areal kebun PT Grahadura Leidongprima, Kabupaten Labuhanbatu Utara. Bogor (ID): BIOREF Fakultas Kehutanan IPB.

Brandyk T, Szatylowicz J, Oleszczuk R, Gnatowski T. 2002. Water-related physical attributes of organic soils. In: Parent LE, Ilnicki P (Eds). Organic Soils and Peat Materials for Sustainable Agriculture. Boca Raton(US: CRC Press. pp.33–62

Chahyahusna A, Baskoro DPT & Anwar S. 2022. Subsidence and percentage of CO2 emission from decomposition to subsidence of peatland on oil palm plantations. AGRIVITA Journal of Agricultural Science, 44(2):258–265. http://doi.org/10.17503/agrivita.v44i2.3038

Cook S, Whelan MJ, Evans CD, Gauci V, Peacock M, Garnett MH, Kho LK, The YA & Page SE. 2018. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences, 15(24):7435–7450. https://doi.org/10.5194/bg-15-7435-2018

Cooper HV, Vane CH, Evers S, Aplin P, Girkin NT & Sjögersten S. 2019. From peat swamp forest to oil palm plantations: The stability of tropical peatland carbon. Geoderma, 342:109-117. https://doi.org/10.1016/j.geoderma.2019.02.021

Couwenberg J & Hooijer A. 2013. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires and Peat, 12(1): 1–13.

Ditjen Perkebunan. 2011. Sustainable Palm Oil Development Policy. In Indonesia: Kebijakan Pengembangan Kelapa Sawit Berkelanjutan. Seminar on RSPO Implementation in Indonesia. Jakarta, 10 Februari 2011

Dommain R, Couwenberg J, Glaser PH, Joosten H & Suryadiputra INN. 2014. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews, 97:1-32. https://doi.org/10.1016/j.quascirev.2014.05.002

Evans CD, Callaghan N, Jaya A, Grinham A, Sjogersten S, Page SE, Harrison ME, Kusin K, Kho LK, Ledger M, Evers S, Mitchell Z, Williamson J, Radbourne AD & Jovani-Sancho AJ. 2021. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. Frontier in Environmental Science, 9:630752. https://doi.org/10.3389/fenvs.2021.630752

Guillaume T, Damris M & Kuzyakov Y. 2015. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ13C. Global Change Biology, 21(9):3548-3560. https://doi.org/10.1111/gcb.12907

Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N & Murdiyarso D. 2017. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 23:3581–99. https://doi.org/10.1111/gcb.13689

Gusmayanti E, Anshari GZ, Pramulya M & Ruliyansyah A. 2019. CO2 fluxes from drained tropical peatland used for oil palm plantation in relation to peat characteristics and crop age after planting. Biodiversitas, 20(6):1650-1657. https://doi.org/10.13057/biodiv/d200622

Hikmatullah & Sukarman. 2014. Physical and chemical properties of cultivated peat soils in four trial sites of ICCTF in Kalimantan and Sumatra, Indonesia. Journal of Tropical Soils. 19(3): 131-141. https://doi.org/10.5400/jts.2014.19.3.131

Hoyos-Santillan J, Lomax BH, Turner BL & Sjögersten S. 2018. Nutrient limitation or home field advantage: Does microbial community adaptation overcome nutrient limitation of litter decomposition in a tropical peatland? Journal of Ecology, 106(4):1558–1569. https://doi.org/10.1111/1365-2745.12923

Husson, F., Josse, J., Le, S. and Mazet, J. 2020. Package ‘FactoMineR’. Multivariate Exploratory Data Analysis and Data Mining. Retrieved from https://cran.rproject.org/web/packages/FactoMineR/index.html

Hutchinson, M.F. 1988. Calculation of hydrologically sound digital elevation models. Paper presented at Third International Symposium on Spatial Data Handling at Sydney, Australia.

Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3-4): 211-232. https://doi.org/10.1016/0022-1694(89)90073-5

IPCC [The Intergovernmental Panel on Climate Change]. Climate Change 2007: The Physical Science Basis. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M & Miller HL (Eds.). Cambridge University Press.

Jauhiainen J, Kerojoki O, Silvennoinen H, Limin S & Vasander H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environmental Research Letters, 9(10): 105013. https://doi.org/10.1088/1748-9326/9/10/105013

Junedi H, Armanto ME, Bernas SM, Imanudin MS. 2017. Changes to some physical properties due to conversion of secondary forest of peat into oil palm plantation. Sriwijaya Journal of Environment, 2(3):76-80. https://doi.org/10.22135/sje.2017.2.3.76-80

Kaiser C, Franklin O, Dieckmann U & Richter A. 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17(6):680-690. https://doi.org/10.1111/ele.12269

Kassambara, A. and Mundt, F. 2020. Package: ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. Retrieved from https://cran.rproject.org/web/packages/factoextra/index.html

Kawahigashi M & Sumida H. 2006. Humus composition and physico-chemical properties of humic acids in tropical peat soils under sago palm plantation. Soil Science and Plant Nutrition, 52(2):153–161. https://doi.org/10.1111/j.1747-0765.2006.00028.x

Koh LP, Miettinen J, Liew SC, & Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences, 108(12):5127–5132. https://doi.org/10.1073/pnas.1018776108

Könönen M, Jauhiainen J, Laiho R, Kusin K & Vasander H. 2015. Physical and chemical properties of tropical peat under stabilized land uses. Mires and peat, 16(08):1–13.

Könönen M, Jauhiainen J, Straková P, Heinonsalo J, Laiho R, Kusin K, Limin S & Vasander H. 2018. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biology and Biochemistry, 123: 229-241. https://doi.org/10.1016/j.soilbio.2018.04.028

Krachler R, Krachler R, Valda A & Keppler BK. 2018. Natural iron fertilization of the coastal ocean by “blackwater rivers.” Science of The Total Environment, 656:952-958 https://doi.org/10.1016/j.scitotenv.2018.11.423

Krüger JP, Leifeld J, Glatzel S, Szidat S, & Alewell C. 2015. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences, 12:2861–2871. https://doi.org/10.5194/bg-12-2861-2015

Kunarso A, Bonner MTL, Blanch EW & Grover S. 2022. Differences in tropical peat soil physical and chemical properties under different land uses: a systematic review and meta-analysis. Journal of Soil Science and Plant Nutrition, 22:4063–4083. https://doi.org/10.1007/s42729-022-01008-2

Kurnain A. 2019. Hydrophysical properties of ombrotrophic peat under drained peatlands. Intrnational Agrophysics, 33:277–283. https://doi.org/10.31545/intagr/110773

Lampela M, Jauhiainen J & Vasander H. 2014. Surface peat structure and chemistry in a tropical peat swamp forest. Plant and Soil, 382(1-2):329–347. https://doi.org/10.1007/s11104-014-2187-5

Ledger MJ, Evans CD, Large DJ, Evers S, Brown C, Jovani-Sancho AJ, Callaghan N, Vane CH, Marshall C, Baskaran A, Gan JY, Sowter A, Morrison K & Sjögersten S. 2023, Tropical peat surface oscillations are a function of peat condition at North Selangor peat swamp forest, Malaysia. Frontier in Environmental Science, 11:1182100. https://doi.org/10.3389/fenvs.2023.1182100

Leifeld J, Klein K & Wüst-Galley C. 2020. Soil organic matter stoichiometry as indicator for peatland degradation. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-64275-y

Madani YA. 2022. Sifat kimia dan fisika tanah gambut pada tegakan kelapa sawit dan semak belukar [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK & Allison SD. 2019. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14:1-9. https://doi.org/10.1038/s41396-019-0510-0

Marwanto S, Watanabe T, Iskandar W, Sabiham S & Funakawa S. 2018. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Science and Plant Nutrition, 64(3):386–395. https://doi.org/10.1080/00380768.2018.1436940

McLay C, Allbrook R & Thompson K. 1992. Effect of development and cultivation on physical properties of peat soils in New Zealand. Geoderma, 54(1-4):23-37. https://doi.org/10.1016/0016-7061(92)90096-P

Moore TR, Large D, Talbot J, Wang M & Riley JL. 2018. The stoichiometry of carbon, hydrogen and oxygen in peat. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2018jg004574

Noor M, Masganti & Agus F. 2014. Pembentukan dan karakteristik gambut tropika Indonesia. Lahan Gambut Indonesia. Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan (Ed. Revisi). 7-32.

Oleszczuk R, Bohne K, Szatylowicz J, Brandyk T & Gnatowski T. 2003. Influence of load on shrinkage behavior of peat soils. Journal of Plant Nutrition and Soil Science, 166(2):220-224. https://doi.org/10.1002/jpln.200390032

Page SE, Rieley JO, Shotyk OW & Weiss D. 1999. Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1391): 1885–1897. https://doi.org/10.1098/rstb.1999.0529

Page SE, Rieley JO & Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2):798–818. https://doi.org/10.1111/j.1365-2486.2010.02279.x

Page S, Rieley J & Wüst R. 2006. Chapter 7 Lowland tropical peatlands of Southeast Asia. Martini IP, Martínez Cortizas A, Chesworth W. (Eds.) Developments in Earth Surface Processes, Vol 9. 145-172. https://doi.org/10.1016/S0928-2025(06)09007-9

Polak B. 1952. Veen en veenontginning in Indonesia. (Peat and peat reclamation in Indonesia). Madjala Ilmu Alam Untuk Indonesia (Indonesian Journal for Natural Science), 5-6. Perhimpunan Ilmu Alam Indonesia, Bandung.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

RePPPRoT [Regional. Physical Planning for Transmigration]. 1987. Indonesian Land System Map. In Indonesia Peta Sistem Lahan Indonesia. Bogor (ID): Pusat Penelitian Tanah

Ribeiro K, Pacheco FS, Ferreira JW, Sousa‐Neto ER, Hastie A, Krieger Filho GC, Alvalá PC, Forti MC, & Ometto JP. 2020. Tropical peatlands and their contribution to the global carbon cycle and climate change. Global Change Biology, 27(3):489–505. https://doi.org/10.1111/gcb.15408

Ritung S, Suryani E, Yatno E, Hikmatullah, Nugroho K, Sukarman, Subandiono RE, Hikmat M, Tafakresnanto C, Suratman, Hidayat H, Sudrajat D, Ponidi, Suryana U, Supriatna W & Hartadi A. 2019. Indonesian Peatland Map Scale 1:50.000. In Indonesia: Peta Lahan Gambut Indonesia Skala 1:50.000. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.

Sabiham S. 1988. Studies on peat in the coastal plains of Sumatra and Borneo. Part I: physiography and geomorphology of the coastal plains. Southeast Asian Studies, 27(4): 461-484.

Sabiham S. 2010. Properties of Indonesian peat in relation to the chemistry of carbon emission. Proc. of Int. Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. Bogor, Indonesia Sept. 28-29, 2010

Sauerbrey R & Zeitz J. 1999. Moore. In: Blume HP (Ed.) Handbuch der Bodenkunde. Landsberg (DE): Ecomed.

Siegel D, Glaser P, So J & Janecky D. 2006. The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. Journal of Hydrology, 320(3-4): 421-431. https://doi.org/10.1016/j.jhydrol.2005.07.046

Sinclair AL, Graham LL, Putra EI, Saharjo BH, Applegate G, Grover SP & Cochrane MA. 2020. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of The Total Environment, 699:134199. https://doi.org/10.1016/j.scitotenv.2019.134199

Sjögersten S, Cheesman AW, Lopez O & Turner BL. 2010. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry, 104:147–163. https://doi.org/10.1007/s10533-010-9493-7

Soil Survey Staff. 2022. Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service.

Springob G & Kirchmann H. 2003. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 35(4):629-632. https://doi.org/10.1016/S0038-0717(03)00052-X

Subardja D, Ritung S, Anda M, Sukarman, Suryani E, & Subandiono RE. 2014. Petunjuk Teknis Klasifikasi Tanah Nasional. Bogor (ID): Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian.

Sulaeman D, Hafiyyan I, Hamzah H, Evans CD, Jovani-Sancho AJ & Jaya A. 2022. Measuring peat motion and water table dynamics on tropical peatlands using high-resolution time-lapse camera in four different land cover types across South Sumatra and Central Kalimantan. IOP Conf. Series: Earth and Environmental Science, 1025:012011. https://doi.org/10.1088/1755-1315/1025/1/012011

Swails E, Jaye D, Verchot L, Hergoualc’h K, Schirrmann M, Borchard N, Wahyuni N & Lawrence D. 2017. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems, 21(5):868–885. https://doi.org/10.1007/s10021-017-0190-4

Tan KH. 1998. Principles of soil chemistry. 3rd ed., Revised and Expanded. Marcel Dekker, Inc. NY. 521p.

Tiemeyer B, Frings J, Kahle P, Köhne S & Lennartz B. 2007. A comprehensive study of nutrient losses, soil properties and groundwater concentrations in a degraded peatland used as an intensive meadow – Implications for re-wetting. Journal of Hydrology, 345(1-2): 80-101. https://doi.org/10.1016/j.jhydrol.2007.08.002

Tipping E, Somerville CJ & Luster J. 2016. The C:N:P:S stoichiometry of soil organic matter. Biogeochemistry, 130(1-2):117–131. https://doi.org/10.1007/s10533-016-0247-z

Tonks AJ, Aplin P, Beriro DJ, Cooper H, Evers S, Vane CH, & Sjögersten S. 2017. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma, 289: 36-45. https://doi.org/10.1016/j.geoderma.2016.11.018

Treat CC, Broothaerts N, Dalton AS, Dommain R, Douglas T, Drexler J, Finkelstein SA, Grosse G, Hope G, Hutchings JA, Jones MC, Kleinen T, Kuhry P, Lacourse T, Lähteenoja O, Loisel Julie, Notebaert Bastiaan, Payne Richard J, Peteet Dorothy M, Sannel A Britta K, Stelling J, Strauss J, Swindles GT, Talbot J, Tarnocai C, Verstraeten G, Williams CJ, Xia Z, Yu Z & Brovkin V. 2019. (Table S1) Global dataset of buried peat locations, ages, and descriptions. Pangaea, https://doi.org/10.1594/PANGAEA.897314

Wang M, Moore TR, Talbot J & Richard PJH. 2014. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environmental Research Letters, 9(2): 024003. https://doi.org/10.1088/1748-9326/9/2/024003

Warren M, Hergoualc’h K, Kauffman JB, Murdiyarso D, & Kolka R. 2017. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 12(1):12. https://doi.org/10.1186/s13021-017-0080-2

Watmough S, Gilbert-Parkes S, Basiliko N, Lamit LJ, Lilleskov EA, Andersen R, et al. 2022. Variation in carbon and nitrogen concentrations among peatland categories at the global scale. PLoS ONE, 17(11): e0275149. https://doi.org/10.1371/journal.pone.0275149

Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S & Martinez-Cortizas A. 2002. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochimica et Cosmochimica Acta, 66(13):2307–2323. https://doi.org/10.1016/s0016-7037(02)00834-7

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K & Yutani H. 2019. “Welcome to the tidyverse.” Journal of Open Source Software, 4(43): 1686. https://doi.org/10.21105/joss.01686

Wit F, Müller D, Baum A, Warneke T, Pranowo WS, Müller M & Rixen T. 2015. The impact of disturbed peatlands on river outgassing in Southeast Asia. Nature Communications, 6(1):1-9. https://doi.org/10.1038/ncomms10155

Yin T, Feng M, Qiu C & Peng S. 2022. Biological nitrogen fixation and nitrogen accumulation in peatlands. Frontier in Earth Science, 10:670867. https://doi.org/10.3389/feart.2022.670867

Yu Z, Loisel J, Brosseau DP, Beilman DW & Hunt SJ. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37:L13402. https://doi.org/10.1029/2010GL043584

Yule CM & Gomez LN. 2008. Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management, 17(3):231–241. https://doi.org/10.1007/s11273-008-9103-9

Zhang W, Liu W, Xu M, Deng J, Han X, Yang G, Feng Y & Ren G. 2019. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337:280-289. https://doi.org/10.1016/j.geoderma.2018.09.042

Zhang Z, Xue Z, Lyu X, Tong S & Jiang M. 2017. Scaling of soil carbon, nitrogen, phosphorus and C:N:P ratio patterns in peatlands of China. Chinese Geographical Science, 27(4), 507–515. https://doi.org/10.1007/s11769-017-0884-8

Downloads

Published

2023-12-25

How to Cite

Pulunggono, H. B., Gusman, O. ., Moh Zulfajrin, Nurazizah, L. L. ., & Anwar, S. . (2023). Driving Mechanism Controlling Cultivated Tropical Peat Physicochemical Characteristics and Stoichiometry: Case Study of a Microtopographical Sequence. CELEBES Agricultural, 4(1), 1–20. https://doi.org/10.52045/jca.v4i1.588

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)