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Abstract: Peatlands formed from long-term accumulation of partially decomposed organic 

matter in wetland areas. This particular ecosystem is not only capable of sequestering 

significant quantities of carbon but also vulnerable to forest and land fires (karhutla). Peatland 

produces considerable CO₂ emissions during fire occurrences, which consequently requires 

spatiotemporal monitoring to sustain its ecological roles and functions. This study aims to map 

the severity of fires in peatland ecosystems, estimate the success of post-fire restoration, and 

develop an Earth Engine Apps-based monitoring platform for peatland fire monitoring. Fire 

severity assessment and post-fire restoration success estimation were conducted in Jambi's Peat 

Hydrological Unit (PHU) in 2019 using the Normalized Burn Ratio (NBR) index derived from 

Sentinel-2 MSI satellite imagery. Most of Jambi PHU's fire severity and restoration levels are 

high. The area of PHU Jambi with high fire severity was 7,822.91 hectares, while the area with 

high restoration success was 23,744.69 hectares. NBR monitoring in PHU Jambi can be used to 

detect fire severity and restore success. The visualization of forest and land fire severity was 

successfully displayed on the Data Indo InaFire webGIS platform, an Earth Engine Apps-based 

monitoring platform. 
 

Keywords: Peatland, GEE, PHU, Jambi, NBR 

Abstract: Lahan gambut terbentuk akibat akumulasi bahan organik yang terdekomposisi 

sebagian di wilayah lahan basah dalam jangka panjang. Ekosistem ini tidak hanya mampu 

menyerap sejumlah besar karbon tetapi juga rentan terhadap kebakaran hutan dan lahan 

(karhutla). Lahan gambut menghasilkan emisi CO₂ yang signifikan saat kejadian kebakaran, 

sehingga diperlukan pemantauan spasial dan temporal untuk mempertahankan peran dan 

fungsi ekologisnya. Penelitian ini bertujuan untuk memetakan tingkat keparahan kebakaran 

pada ekosistem gambut, mengestimasi keberhasilan restorasi pasca-kebakaran, serta 

mengembangkan platform pemantauan berbasis Earth Engine Apps untuk pemantauan 

kebakaran gambut. Penilaian tingkat keparahan kebakaran dan estimasi keberhasilan restorasi 

pasca-kebakaran dilakukan di Kesatuan Hidrologis Gambut (KHG) Jambi pada tahun 2019 

menggunakan indeks Normalized Burn Ratio (NBR) yang diperoleh dari citra satelit Sentinel-

2 MSI. Sebagian besar tingkat keparahan kebakaran dan tingkat keberhasilan restorasi di KHG 

Jambi tergolong tinggi. Luas wilayah KHG Jambi dengan tingkat keparahan kebakaran tinggi 

mencapai 7.822,91 hektar, sedangkan luas wilayah dengan tingkat keberhasilan restorasi tinggi 

mencapai 23.744,69 hektar. Pemantauan NBR di KHG Jambi dapat digunakan untuk 

mendeteksi tingkat keparahan kebakaran dan keberhasilan restorasi. Visualisasi tingkat 

keparahan kebakaran hutan dan lahan berhasil ditampilkan pada platform webGIS Data Indo 

InaFire, sebuah platform pemantauan berbasis Earth Engine Apps. 

 

Kata kunci: Gambut, GEE, KHG, Jambi, NBR 
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INTRODUCTION  

Peatlands formed from long-term accumulation of partially decomposed organic matter 

in wetland areas, which is capable of sequestering significant quantities of carbon. According to 

Saragi-Sasmito et al. (2019), peat soil can store up to 93% carbon. As much as 3% of the land area 

inclusively is estimated to be able to store 500-700 Gt of organic carbon on a global scale (Septian 

et al. 2023). Therefore, peat conservation has the potential to mitigate climate change (Harrison et 

al. 2020;  Humpenöder et al. 2020). One of the problems in peat ecosystems is that they are 

vulnerable to forest and land fires (karhutla; Saharjo 2023). Peat ecosystems damaged by forest 

and land fires cause large amounts of stored carbon to be released, which exacerbates global 

warming and impacts climate change (Ward et al. 2007).  

Remote sensing technology has become an critical tool for monitoring and modelling 

environmental dynamics, providing valuable information across diverse applications. The 

remote sensing-based information system has been extensively employed in monitoring 

peatlands (Du et al. 2019;  Ghazaryan et al. 2016; Mahrad et al. 2020; Saputri et al. 2024A; Zhao et 

al. 2023), natural disasters (Nugraha et al. 2024; Scheip and Wegmann 2021), agriculture (Zhang 

et al. 2020), mangrove carbon stock (Adni et al. 2024), forest farmer safety management 

(Rahmawati et al. 2023), mining reclamation (Alamako et al. 2024), and coastal change (Madinu 

mailto:millhaam01@gmail.com
https://ojs.untika.ac.id/index.php/faperta
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et al. 2024). In peatland ecosystems, monitoring systems are particularly vital for preventing and 

mitigating the adverse effects of fires. These systems enable the concurrent detection, tracking, 

and analysis of fire events. According to Minasny et al. (2019), Humpenöder et al. (2020), and 

Surahman et al. (2019), fire monitoring technologies aim to implement prevention strategies 

targeting both surface vegetation and subsurface peat fires. The delta Normalized Burn Ratio 

(dNBR) is a widely used method for analyzing fire-affected areas and quantifying fire severity 

using satellite imagery (Miller 2009). Initial assessments of fire severity are crucial for 

understanding trends and informing effective management strategies for Peat Hydrological Unit 

(PHU) landscapes (Saputri et al. 2024B; Sutikno et al. 2020; Pratama et al. 2023; Cahyono et al. 

2022). 

PHU Jambi was chosen due to its relevance as a large peat ecosystem area prone to fires, 

for example in August 2019, 810 hotspots were detected in Jambi Province (Saputra et al. 2021). 

The Jambi PHU in 2019 experienced significant fires with a burned area of 33,863.6 ha, mostly in 

forest areas. This condition emphasizes the importance of monitoring and special handling efforts 

in PHU Jambi to maintain its function in climate change mitigation. One of the efforts that can be 

made to monitor peat ecosystem areas is the use of remote sensing technology and Geographic 

Information Systems (GIS). In addition, it is necessary to develop a remote sensing-based 

monitoring system for monitoring PHU conditions related to forest and land fires. Therefore, this 

research aims to analyze and map the severity of fires in PHU Jambi, estimate the success rate of 

post-fire restoration in PHU Jambi and develop a monitoring platform based on Earth Engine 

Apps for visualization in monitoring fires in peat ecosystems. 

 

MATERIALS AND METHODS 

Study Location 

The study site is located in PHU located in Jambi province, Indonesia. The PHU area 

boundaries were obtained from map from Low Carbon Development Indonesia (LCDI) of the 

Ministry of PPN-Bappenas (LCDI 2019). The study location map is shown in Figure 1. The PHU 

is located in the administrative areas of East Tanjung Jabung and Muaro Jambi. In addition, the 

PHU also contains a conservation area, namely Berbak National Park.  

Data Source and Research Workflow 

This research used Sentinel-2 MultiSpectral Instrument (MSI) imageries obtained directly 

from the Google Earth Engine (GEE) platform. In this study, sentinel-2 type surface reflectance 

(SR) was used with acquisition time from December 2018 to August 2019 for pre-fire imagery, 

September 2019 to November 2019 for post-fire imagery and January 2023 to December 2023 for 

regrowth imagery. The cloud masking process uses the GEE platform with a selection of cloud 

percentages of less than 30%. The selection of satellite imagery is based on the median of the 

acquisition period range. Sentinel images are processed in Google Earth Engine (GEE) to obtain 

land cover classification, severity of forest and land fires and post-fire ecosystem recovery. The 

research flowchart is presented in Figure 2. 
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Figure 1.  Study location Map 

Data Processing and Analyses 

LULC Classification 

Land classification was conducted using a supervised classification method involving 

several indices, namely vegetation, water, and built-up indices (Table 1). This study employed a 

random forest/RF classifier, a machine learning algorithm composed of fully grown decision 

trees that were built by performing random resampling both on input variables and observations 

(Breiman 2001; Ho 1998). RF classifiers were reportedly able to handle high data dimensionality 

and multicollinearity (Belgiu and Drăguţ 2016), which can solve both classification and regression 

problems (Sheykhmousa et al. 2020). In the study, we tuned the RF algorithm using tree = 500 

and training data up to 582688 data for forests, 12062 for plantations, 185 data for built-up land, 

834 data for water bodies, 13756 data for plantation forests, and 12062 data for bare land. 

Accuracy assessments were performed using overall accuracy and kappa accuracy methods. The 

land classification process is based on the spectral index bands as its input dataset. According to 

Asy'ari et al 2023, the use of multiple indices in land cover classification could enhance 

classification accuracy by leveraging the high sensitivity of each index to land cover types. 
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Figure 2.  Research workflow employed in this study 

Table 1.  Spectral index input dataset from land use classification 

Index Formula References 

Atmospherically Resistant 

Vegetation Index (ARVI) 

ARVI = (NIR – (2 Red) + Blue) / (NIR + (2 x Red) + Blue) Kaufman and 

Tanre (1992) 

Chlorophyll Absoption Ratio Index 

(CARI) 

CARI = ((RE – Red) – 0,2 x (RE – Green)) x (RE – Red) Kim et al (1994) 

Enhanced Vegetation Index (EVI) EVI = 2.5 x ((NIR – Red) / ((NIR) + (C1 x Red) – (C2 x Blue) + L)) Huete et al (2002) 

Modified Chlorophyll Absorbtion 

Ratio Index (MCARI) 

MCARI = ((NIR – Red) – 0,2 x (NIR – Green)) x (NIR – Red) Daughtry (2000) 

MNDVI (Modified Normalized 

Vegetation Index) 

MNDVI = (c.NIR – RED)/(c.NIR+RED) Jurgens (1997) 

Soil Adjusted Vegetation Index 

(SAVI) 

SAVI = ((NIR – Red) / (NIR + Red + L)) x (1 + L) 

L = 0.5 

Huete (1988) 

Specific Leaf Area Vegetation Index 

(SLAVI) 

SLAVI = NIR / Red + MIR Lymburner et al 

(2019) 

Index‐Based Built‐up Index (IBI) IBI = NDBI − ((SAVI + MNDWI) / 2) / NDBI + ((SAVI + MNDWI) / 

2) 

Xu (2008) 
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Index Formula References 

Augmented Normalized Difference 

Water Indeks (ANDWI) 

ANDWI = (Blue + Green + Red + NIR – SWIR1 – SWIR2) / (Blue + 

Green + Red + NIR + SWIR1 + SWIR2) 

Rad et al (2021) 

Land Surface Water Index (LSWI) LSWI = NIR − SWIR1 / NIR + SWIR1 Xiao et al (2002) 

Modified Normalized Difference 

Water Index (MNDWI) 

MNDWI = Green - SWIR / Green + SWIR Xu (2006) 

Information:  Blue: blue band; Green: green band; Red: red band, RE: red-edge band; NIR: near-infrared band; SWI: shortwave-

infrared band; C1 C2: the aerosol coefficients were 6.0 and 7.5, respectively, G: gain factor (value 2.5); S2: Sentinel 2 MSI 

 

Burn Area Detection 

Assessment of fire severity and estimation of post-fire restoration success was conducted 

using the NBR burn index. This data process was obtained from Sentinel-2 MultiSpectral 

Instrument (MSI) satellite imagery supported by Earth Engine Apps and ArcMap GIS 10.3 

application. Fire and restoration data processing techniques use Geographic Information System 

(GIS) analysis with the help of ArcMap GIS 10.3 application. Earth Engine Apps is a derivative 

product of Google Earth Engine that has the function of visualizing the results of data analysis. 

Detection of burnt area, severity, and recovery rate was conducted using the Normalized Burn 

Ratio (NBR) index. NBR is a spectral index used in detecting the severity of forest and land fires 

because it uses SWIR bands that are sensitive to water or moisture (Naseri and Kalkan 2020). The 

NBR value is calculated from the difference between near Infrared/NIR and short-wave 

infrared/SWIR bands divided by the sum of the two (Santos et al. 2020), with Equation 1. 

NBR = (NIR - SWIR)/(NIR+SWIR)     Equation (1) 

where 

NBR  : Spectral value of Normalized Burn Ratio 

NIR  : Band-8 Sentinel-2 MSI 

SWIR  : Band-11 Sentinel-2 MSI 

 

The analysis of the extent and level of forest fires uses the delta NBR severity (dNBRs) 

approach, which is the difference between the pre and post NBR values (Santos et al. 2020). NBR 

pre is the result of analyzing land data before burning from December 2018 to August 2019, while 

NBR post is the result of analyzing land data that experienced fires from September to November 

2019. The dNBRs approach was calculated using Equation 2. 

dNBRs = NBR pre – NBR post      Equation (2) 

where   

dNBRs  : NBR value differences/delta 

NBR pre  : Spectral value NBR before forest and land fire 

NBR post  : Spectral value NBR after forest and land fire  

 

https://www.tandfonline.com/doi/full/10.1080/01431160802575653
https://www.space4water.org/taxonomy/term/1246
https://www.space4water.org/taxonomy/term/1246
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The analysis of estimating restoration success was carried out using the delta NBR 

regrowth (dNBRr) approach, which is the difference between NBR post and NBR regrowth 

(Santos et al. 2020).  NBR post is the result of data analysis of land that experienced fires from 

September to November 2019, while NBR regrowth is the result of data analysis of land that 

experienced recovery from January to December 2023.  The dNBRr approach is calculated using 

Equation 3. Meanwhile, the estimation of fire severity and ecosystem recovery rate is based on 

the research (Santos et al. 2020) presented in Table 2. 

dNBRr = NBR post – NBR regrowth      Equation (3) 

where 

dNBRr   : Delta NBR regrowth 

NBR post   : Spectral value NBR after forest and land fire  

NBR regrowth  : Current NBR spectral value  

 

Table 2.  Burn severity and recovery level 

Severity and recovery level Interval dNBR 

Enhanced recovery high -0-50 – (-0-25) 

Enhanced recovery low -0-25 – (-0-99) 

Non-burnt -0-10 – 0-99 

Low severity 0-10 – 0-27 

Moderate low severity 0-27 – 0-44 

Moderate severity 0-44 – 0-66 

High severity 0-66 – 0-13 

 

Data Visualization using Earth Engine Apps 

Spatial data on peat fire severity was visualized using the Earth Engine Apps platform. 

This platform is a cloud computing-based geospatial platform that allows integration of satellite 

image data and can display the results of data analysis (Amani et al. 2020). The development of 

this platform was carried out with the help of JavaScript programming language with functions 

in displaying spatial data. 

 

RESULTS 

LULC Classification 

The results of the land classification show that most of the land cover in KHG Jambi is 

forest. There are several other land covers such as plantations, industrial plantations, settlements, 

open land, and water bodies as shown in Figure 3. The figure shows that most of the burned areas 

are in forest land cover. This indicates that there is damage to the peat ecosystem in the forest 

area which has the potential to cause forest and land fires. The results of the accuracy assessment 

showed an overall accuracy value of 82.54% with a kappa statistic of 78.34%. 
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Figure 3.  LULC classification and burn area 

Fire Peatland Impact 

The severity of fires is reflected in the dNBRs and dNBRr analyses results, as shown in 

Figure 4. Higher dNBRs values indicated more severe fire levels, while lower dNBRr values were 

designated to better post-fire recovery. Most of the burnt areas were found in the forest area to 

the east, which were adjacent to the coastal areas. There were some burnt areas in the Berbak 

National Park area. Meanwhile, a small fraction of the burnt area occupied the plantation areas. 

Timeseries of Peatland Succession 

The results of the NBR time series analysis showed that from September to December 2019 

the NBR value has decreased drastically, proving that the month has occurred forest and land 

fires (Figure 5). Forest and land fires produced a relatively low NBR spectral values. NBR is 

particularly sensitive to soil moisture content due to the incorporation SWIR band (Equation 1), 

which exhibits low reflectance under high-water conditions (Roy et al. 2006).  
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The results of the analysis of fire severity and post-fire recovery are shown in Figure 6. 

The results show that most of the forest and land fires were classified as high in severity. 

However, the level of post-fire recovery is mostly categorized as high (Figure 7). Recovery from 

forest and land fires can come from natural succession or restoration programs carried out by 

communities. 

 
Figure 4.  Visual of dNBR analysis 

 
Figure 5.  NBR Time Series in the Jambi PHU  

Platform InaFire: Indonesia Forest and Land Fire Monitoring 

The visualization of forest and land fire severity is displayed in the Earth Engine Apps-

based platform Data Indo InaFire (Figure 8). The platform can present land and forest fire data 

spatially for users. The platform displays Sentinel 2 satellite imagery visualized with composite 
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R-G-B, SWIR-NIR-Red bands. The platform includes a legend feature that shows the severity of 

the fire, a location feature that can select a target location. These features are built from existing 

functions in the Google Earth Engine using the JavaScript programming language. 

 
Figure 6.  Map of burned area in KHG Jambi, (A) burn severity, (B) post-fire recovery rate 

 
Figure 7.  Area of fire severity and post-fire recovery rate 

 
 

Figure 8  Platform Data-Indo InaFire 
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DISCUSSION 

Burned areas were indicated by low NBR values, as fire-affected vegetations produced 

high SWIR reflectance and low NIR (Roy et al. 2021). Figure 4 clearly visualized this contrast, as 

burned areas appearing dark or dark red due to high dNBR values, reflecting considerable 

decreases in NBR due to forest and land fires. Time series data from September to December 2019 

as exhibited in Figure 5, further confirmed this drastic decline in NBR values. The use of the NBR 

value in detecting burned areas can use the delta NBR (dNBR) approach, which is the difference 

between the pre NBR (before burning) and post NBR (after burning). The use of the dNBR value 

is more optimal in detecting burned areas while estimating the severity of burned areas (Escuin 

et al. 2008). NBR also successfully detects burned areas using segmentation algorithms with an 

overall accuracy value of 94% (Vedovato et al. 2015). Overlaying NBR-based fire detection with 

land-use and land-cover (LULC) analysis revealed that most burned areas are concentrated across 

forest land cover, including conservation areas such as the Berbak National Park, located at the 

Jambi-South Sumatra border (Figure 3). Based on a previous report (Widodo 2014), Jambi 

Province is one of the provinces that has a fairly high level of forest and land fire vulnerability. 

Meanwhile, forest and land fires in Jambi Province caused severe forest degradation and release 

considerable amount of CO2 and particulate matter that is harmful to health (Sari et al. 2014). 

Previous research by Teodoro and Ana (2019) and Rizqika et al (2012) demonstrated that 

NBR approach could accurately estimate forest and land fire severity in the field. The analysis of 

fire severity and recovery in PHU Jambi (shown in Figures 6 and 8) revealed that most areas 

experienced high levels of both fire severity and recovery. The total burned area in Jambi PHU 

was estimated at approximately 33,863.6 ha, of which 29,106.38 ha or 85.95% of the total area was 

located on forest land. The fire severity analysis showed that 4,067.41 ha fell under low-medium 

severity, 21,809.97 ha under upper-medium severity, and 7,822.91 ha under high severity. Post-

fire restoration estimates for 2023 indicated that 23,744.69 ha had high recovery, 9,030.42 ha had 

low recovery, and 1,014.32 ha showed no recovery. This study findings on fire severity in Jambi 

PHU is aligned with Saputra et al (2021), who reported 810 hotspots in Jambi Province in 2019. 

Current and previous results highlighted the Jambi PHU’s vulnerability to fires. The extensive 

burned area underscores the need for targeted management strategies in PHU Jambi. Developing 

a national-scale PHU monitoring platform is crucial to track burned areas and assess peat 

restoration success. Using NBR analysis with Sentinel-2 MSI imagery effectively detected fire 

severity and restoration outcomes in the peat ecosystem.  

Furthermore, although the NBR approach employed in this study offers significant 

potential for monitoring peatland fires due to its strong capability in detecting burned areas, 

several limitations still persist. NBR has a high sensitivity to built-up land and open land, thus 

increasing detection bias, although the bias can be reduced by using dNBR (Picotte and Robertson 

2011). However, the use of dNBR also has the potential for miss-classification of changes in land 

use, especially changes in vegetated areas to open land. Future advancements should focus on 

developing burned area detection methods using machine learning or other innovative 
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approaches, alongside implementing robust accuracy assessment frameworks to enhance 

detection precision.  

The severity of forest and land fires was successfully visualized through the Data Indo 

InaFire platform, an Earth Engine Apps-based monitoring system accessible at https://ee-

dataindo-ssrs.projects.earthengine.app/view/inafire. This platform presented spatial data on 

forest and land fire severity and can be utilized to monitor such events across Indonesia. Designed 

for ease of use, it caters to users with limited GIS expertise. Leveraging cloud computing, the 

platform offered efficient data processing and had the potential to serve as a primary database 

for spatial information on forest and land fires in Indonesia. Similar to this study, Zhang et al. 

(2020) developed an Earth Engine Apps-based platform for agricultural land use monitoring, 

demonstrating the versatility of such systems while pinpointing opportunities for further 

enhancement. 

CONCLUSIONS 

The analysis of burned areas in PHU Jambi using dNBR with Sentinel-2 MSI imagery 

demonstrated its effectiveness in detecting peat fire severity and restoration success in Jambi 

PHU. An approximate of 33,863.6 ha of burned area was estimated in total, with 85.95% (29,106.38 

ha) located on forest land cover. Fire severity analysis categorized 4,067.41 ha as lower-medium 

severity, 21,809.97 ha as upper-medium severity, and 7,822.91 ha as high severity. Post-fire 

restoration success in 2023 showed 23,744.69 ha achieved high recovery, 9,030.42 ha showed low 

recovery, and 1,014.32 ha exhibited no recovery. The severity of forest and land fires was 

effectively visualized through the Data Indo InaFire platform, an Earth Engine Apps-based 

system, highlighting its potential as a national-scale tool for monitoring fire impacts and 

restoration outcomes. 
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