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Abstract: The Lapindo mudflow disaster at the PT Lapindo Brantas drilling site in 

Ronokenongo Village, Porong District, Sidoarjo Regency, East Java caused the loss of 

agricultural and residential areas. The research aimed to detect the areas that are affected by 

Lapindo mudflow 2006-2022 using Landsat 7 ETM and Landsat 8 OLI-TIRS imageries, as well 

as visualize their impact using the cloud computing-based Google Earth Engine/GEE platform. 

Spatiotemporal data analysis was performed on the GEE platform using random forest 

machine learning as algorithm for supervised land use classification, while visualization was 

carried out through Earth Engine Apps. The results showed an increase in the mudflow-

affected area from 2006 (204.57 ha) to 2012 (542.32 ha) with northeast direction, whereas the 

increase was insignificant at the following years. Within the detection period, agricultural land 

was the most affected area, followed by residential areas and bare land. The area ordering was 

similar during all detected years. The increasing size of the affected area can potentially have 

both direct and indirect impacts on the surrounding area. Therefore, special action is needed 

for the surrounding area, such as relocating settlements to safer areas against the Lapindo 

mudflow disaster. 
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Abstrak: Bencana semburan lumpur Lapindo di lokasi pengeboran PT Lapindo Brantas di Desa 

Ronokenongo, Kecamatan Porong, Kabupaten Sidoarjo, Jawa Timur menyebabkan hilangnya 

lahan pertanian dan pemukiman. Penelitian ini bertujuan untuk mendeteksi wilayah yang 

terkena dampak semburan lumpur Lapindo 2006-2022 menggunakan citra Landsat 7 ETM dan 

Landsat 8 OLI-TIRS, serta memvisualisasikannya melalui platform Google Earth Engine/GEE 

berbasis komputasi awan. Analisis data spatiotemporal dilakukan pada platform GEE 

menggunakan pembelajaran mesin random forest sebagai algoritma untuk klasifikasi 

penggunaan lahan terawasi, sedangkan visualisasinya dilakukan melalui Earth Engine Apps. 

Hasil penelitian menunjukkan terjadi peningkatan luas wilayah terdampak semburan lumpur 

dari tahun 2006 (204,57 ha) hingga tahun 2012 (542,32 ha) dengan arah timur laut dari lokasi 

awal semburan, sedangkan peningkatannya tidak signifikan pada tahun-tahun berikutnya. 

Lahan pertanian merupakan lahan yang paling terkena dampak, disusul pemukiman dan 

lahan kosong dalam kurun waktu deteksi. Urutan wilayah yang terdampak serupa sepanjang 

tahun deteksi. Meningkatnya luas wilayah yang terkena dampak berpotensi menimbulkan 

dampak langsung dan tidak langsung terhadap wilayah sekitarnya. Oleh karena itu, 

diperlukan tindakan khusus terhadap wilayah sekitar, seperti merelokasi permukiman ke 

wilayah yang lebih aman terhadap bencana lumpur Lapindo. 

Kata kunci: Bencana, Landsat, Penginderaan Jauh 
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INTRODUCTION  

Remote sensing allows collecting data without direct contact with objects in time series to 

monitor land cover dynamics (Zhou et al. 2016; Asy’Ari et al. 2023; Rivai et al. 2023). The obtained 

data can provide specific information for monitoring land cover on the earth's surface using 

classification techniques (Rembold et al. 2015). The spectral characteristics of satellite image data 

that are acquired within a certain time span can be clustered using supervised or unsupervised 

classification to obtain spatiotemporal trend data on land cover changes (Gomez et al. 2016). 

Analyses on satellite imagery can spatiotemporally detect land changes including changes in 

spectral value thresholds, changes in index thresholds, image segmentation, image classification, 

and statistical analysis of spatial data (Zhu 2017).  

The rapid development of remote sensing has encouraged the innovations to accelerate 

the retrieval and analysis of satellite image data. Currently, the development of cloud-based 

mapping platforms (cloud computing) is considered matured that capable to process large data 

(Mutanga and Kumar 2019). Google Earth Engine (GEE) is a cloud computing-based geospatial 

processing platform for monitoring and analyzing large-scale spatial data. The GEE platform can 

be used for educational and research purposes, allowing users to do scripting, discover, 

analyze/process and visualize large amounts of georeferenced data (Kumar and Mutanga 2018).  

The capability to analyze time-series remote sensing data using cloud computing 

technology provide easy access to spatial information for monitoring purposes, specifically for 

disaster monitoring. Through satellite imagery analysis, spatial modelling capable to predict 

vulnerability, severity, and the intensity of disasters (Klemas 2015). Monitoring natural disasters 

can also be carried out using spatial indices as an indication of the drought disaster occurrences 

with differences in certain threshold values (Wang et al. 2022). The Lapindo mudflow disaster 

seriously impacted the social and economic aspects of society, which can result in conflict 

(Intakhiya et al. 2021). This disaster submerged agricultural, residential and industrial areas into 

a vast sea of mud (Dewantara 2013). Therefore, it is necessary to carry out spatiotemporal 

monitoring of the areas affected by the Lapindo mud flow as a consideration to prevent and 

handle this disaster. 
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MATERIALS AND METHODS 

Research Location 

The study location is in Sidoarjo Regency, East Java, especially at the Lapindo mudflow 

location. The location of the Lapindo mudflow is in three sub-districts, namely Porong, 

Tanggulangin, and Jabon. The location of the Lapindo mudflow is near the Porong River and the 

pond area to the east. A map of the research location is shown in Figure 1. 

 

Figure 1.  Map of research location 

Data Processing 

 This research used secondary data in the form of Landsat-7 ETM+ satellite images for 

images in 2004, 2006, 2008, 2010, and 2012, as well as Landsat-8 OLI-TIRS for images in 2014, 2016, 

2018, 2020, and 2022. Landsat-7 ETM+ is the second generation launched by NASA in 1998. 

Landsat-8 OLI-TIRS launched in 2013 is the generation after Landsat 7. Landsat 8 carries two 

sensors, namely Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (Adiri et al. 

2020). Furthermore, other spatial data were obtained from the Indonesian Topographic Map (Peta 

Rupabumi Indonesia/RBI) including administrative boundaries of Sidoarjo Regency. 

 Data processing was conducted using the cloud computing-based GEE platform. This 

study classified the land cover using supervised classification to detect areas affected by the 

Lapindo mudflow (Figure 1) from 2004 to 2022. Random forest algorithm trained by 3380, 1018, 

163, 561, and 4536 pixels of agricultural land, residential areas, bare land, water bodies, and mud, 
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respectively. A total of 250 validation points (50 points per land uses) were created to assess the 

detection accuracy. Moreover, visualization of the affected areas was also carried out using the 

Earth Engine Apps platform (EE apps) with the SWIR-NIR-RED composite band. This research 

workflow is shown in Figure 2. 

 

Figure 2.  Map of research location 

 

RESULTS 

Detection of Areas Affected by The Lapindo Mudflow 

The detection results presented in Figures 3 and 4 revealed that the mud affected areas 

increased dramatically from 2006 to 2012, encroaching northeastern areas since its inception. 

However, the slope showed an incremental pattern at the following years until the end of 

detection period. The most affected area submerged by the mudflow disaster was agricultural 

land, totalling around from 183.56 ha at the first detection year to 387.67 ha at the end of detection. 

Residential areas were the second most affected by mudflow disaster, constituted less than 5% of 

total mud-submerged areas. Its percentages were then significantly increased to one third of the 

total affected areas until 2012, which then remained steady until 2022. The least affected land use 

was bare land, which was detected less than 1% in 2006. Its contribution was increased to around 

4% at the end of detection year. The land use ordering of mudflow-affected areas was similar in 

all detected years.  
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Figure 3.  Graph of the area affected by the Lapindo mudflow 

 

 

Figure 4.  Spatiotemporal map of the area affected by the Lapindo mudflow 
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Earth Engine Apps Platform 

The visualization results are displayed in the webGIS platform (Figure 5) with the SWIR-

NIR-RED composite band. This platform can be accessed by the public via the EE Apps website 

(https://datastat-ssrs.users.earthengine.app/view/volume-08). The webGIS platform has an 

important role in providing interactive information and representing simple conditions. This 

webGIS platform was developed through GEE and is featured in the EE Apps feature. 

 

Figure 5.  View of the Lapindo mud disaster monitoring webGIS platform 

 

DISCUSSION 

 The Lapindo mudflow damaged the infrastructures around the affected area, such as subside 

the land elevation, bend the railway tracks, rupture the PDAM pipes, and collapse the mud 

retaining embankments (Ekawati 2018). The increase of the affected area by the Lapindo mudflow 

disaster is visually presented in a spatiotemporal map (Figure 4). The results of detecting areas 

affected by the Lapindo mudflow show an annual increase in the area. First, the area affected by 

the Lapindo mudflow started in 2006 was 204.57 ha and continued to increase rapidly to 542.32 

ha in 2012. The type of land use most affected by the Lapindo mudflow disaster is agricultural 

land. The area of agricultural land lost due to the Lapindo mudflow disaster in 2022 is 387.67 ha 

or around 67% of the total area affected, while the residential area in 2022 is 165.74 ha. Conversely, 

the increase in Lapindo mudflow area from 2012 to 2022 was found to be insignificant (Figure 3). 

An area expansion was detected towards the north with the beginning of the mudflow in the rice 

fields (Figure 4). The first burst occurred in Siring Village, Porong District, Sidoarjo Regency, on 

29th May 2006 due to a petroleum drilling error carried out by company of PT. Lapindo Brantas 

https://datastat-ssrs.users.earthengine.app/view/volume-08
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(Suryaningsih and Handayani 2017). The increase of the affected areas was controlled by huge 

volume of released mud, which estimated to be around 5,000 to 50,000 m3/day (Dewantara 2013).  

 The accuracy assessment resulted in total accuracy value of 93.2% with kappa value of 0.91. 

Our result was similar to Rivai et al (2023) who reported above 90% accuracy of the random forest 

algorithm in classifying land. Meanwhile, Madinu et al (2024), also reported that the random 

forest algorithm capable to differentiate land and sea with an accuracy of above 97%. Using 50 

validation data, the algorithm correctly detected mud land cover with 100% accuracy. The 

increasing size of the affected area can potentially have both direct and indirect impacts on the 

surrounding area. Therefore, special action is needed for the surrounding area, such as relocating 

settlements to safer areas against the Lapindo mudflow disaster. 

 Figure 5 showed the appearance of the EE apps application. This platform allows users to 

access land cover changes resulting from the Lapindo mud disaster without having special skills 

in the field of GIS. Further development of this platform can be used to monitor land cover 

dynamics spatially and temporally. Apart from monitoring land cover, with certain modelling 

using satellite imageries, GIS analyst can use this platform to display evapotranspiration (Mhawej 

and Faour 2020), disaster impacts (Scheip and Wegman 2021), and water quality monitoring 

(Singh et al. 2021). This is an advantage of the Google Earth engine which is able to provide 

informative and open-source data based on cloud computing. As reported by Zhang et al (2020), 

Google Earth Engine can host and process satellite data into a cloud computing-based platform, 

providing information on changes in agricultural land cover. Furthermore, Allen et al (2015) 

developed an Earth Engine Apps-based platform using Google Earth Engine data. 

 

CONCLUSIONS 

The results of data analysis show that the area affected by the Lapindo mudflow has 

increased quite rapidly from 2006 (204.57) to 2012 (542.31 ha). In 2022, the affected area will be 

576.11 ha. The type of land use most affected by the Lapindo mud disaster is agricultural land. 

The area of agricultural land lost due to the Lapindo mudflow disaster in 2022 is 387.67 ha or 

around 67% of the total affected area. Meanwhile, the residential area affected in 2022 is 165.74 ha 

or around 28.77% of the total affected area. The spatiotemporal map of the area affected by the 

Lapindo mudflow disaster is visualized on the EE Apps platform so that users can easily access 

spatial information related to the area affected by the Lapindo mudflow disaster. 
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