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Abstract: Currently, there is a growing interest among research communities in the 

development of statistical learning-based pedotransfer functions/PtFs to predict mineral soil 

nutrients; however, similar studies in peatlands are relatively rare. Moreover, extracting 

meaningful information from these ‘black-box’ models is crucial, particularly concerning 

their algorithmic complexity and the non-linear nature of the soil covariate 

interrelationships. This study employed the Pulunggono (2022a) dataset and the 

bootstrapping method, to (1) develop and evaluate seven PtF models, including both 

general linear models (GLM) and machine learning (ML) regressors for estimating total 

nitrogen (N) in tropical peat that has been drained and cultivated for oil palm (OP) in Riau, 

Indonesia and (2) explaining model functioning by incorporating Shapley Additive 

Explanation (SHAP), a tool derived from coalitional game theory. This study demonstrated 

the superior predictive performance of ML-based PtFs in estimating total N compared to 

GLM algorithms. The top-performing algorithms for PtF models were identified as GBM, 

XGB, and Cubist. The SHAP method revealed that sampling depth and organic C were 

consistently identified as the most important covariates across all models, irrespective of 

their algorithmic capabilities. Additionally, ML algorithms identified the total Fe, pH, and 

bulk density (BD) as significant covariates. Local explanations based on Shapley values 

indicated that the behavior of PtF-based algorithms diverged from their global 

explanations. This study emphasized the critical role of ML algorithms and game theory in 

accurately predicting total N in peatlands subjected to drainage and cultivation for OP and 

explaining their model behavior in relation to soil biogeochemical processes. 

Keywords: artificial intelligence, machine learning, pedotransfer functions, Shapley Additive 

Explanation/SHAP, Shapley value 

 

 

Abstrak: Saat ini, terdapat minat yang semakin besar di kalangan komunitas peneliti dalam 

pengembangan fungsi pedotransfer berbasis pembelajaran statistik (statistical learning) 

untuk memprediksi unsur hara tanah mineral; namun demikian, penelitian serupa di lahan 

gambut masih jarang dilakukan. Selain itu, mengekstraksi informasi yang berarti dari 

model 'kotak hitam' ini sangat penting, terutama terkait kompleksitas algoritmik dan sifat 

hubungan kovariat tanah yang tidak linier. Penelitian ini menggunakan dataset 

Pulunggono (2022a) dan metode bootstrapping, untuk (1) mengembangkan dan 

mengevaluasi tujuh model PtF, termasuk model linear umum (GLM) dan regresi machine 

learning (ML) untuk mengestimasi total nitrogen (N) pada gambut tropis yang telah 

didrainase dan dibudidayakan untuk kelapa sawit (OP) di Riau, Indonesia, serta (2) 

menjelaskan fungsi model dengan menggabungkan Shapley Additive Explanation (SHAP), 

sebuah perangkat yang berasal dari teori permainan koalisi. Studi ini menunjukkan kinerja 

prediksi yang unggul dari PtF berbasis ML dalam mengestimasi total N dibandingkan 

dengan algoritma GLM. Algoritma dengan performa terbaik untuk model PtF diidentifikasi 

sebagai GBM, XGB, dan Cubist. Metode SHAP mengungkapkan bahwa kedalaman 

https://crossmark.crossref.org/dialog/?doi=10.52045/jca.v4i1.592&domain=pdf
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pengambilan sampel dan karbon organik (C) secara konsisten diidentifikasi sebagai 

kovariat yang paling penting di semua model, terlepas dari kemampuan algoritmanya. 

Selain itu, algoritma ML mengidentifikasi total Fe, pH, dan bobot isi (BD) sebagai kovariat 

yang signifikan. Penjelasan lokal berdasarkan nilai Shapley mengindikasikan bahwa 

perilaku algoritma berbasis PtF berbeda dengan penjelasan globalnya. Studi ini 

menekankan peran penting algoritma ML dan teori permainan dalam memprediksi secara 

akurat total N di lahan gambut yang mengalami drainase dan budidaya untuk OP dan 

menjelaskan perilaku model mereka dalam kaitannya dengan proses-proses biogeokimia 

dalam tanah. 

Kata kunci: fungsi pedotransfer, kecerdasan buatan, nilai Shapley, pembelajaran mesin, 

Shapley Additive Explanation/SHAP 

 

INTRODUCTION  

Peatlands are regarded as the most carbon-dense of soil ecosystems. Peat soil primarily had 
high C content (more than 12%; Soil Survey Staff 2014; Subardja et al. 2014) and was derived from 
organic matter accumulation under prolonged waterlogging and anaerobic conditions (Noor et al. 
2016). Although peatlands only cover about 3% of the total global land surface (Yu et al. 2010), they 
contain about 644 Gt C or around 21% of the 0-300 cm of total global soil organic C stock 
(Scharlemann et al. 2014; Leifeld and Menichetti 2018). Furthermore, Indonesian tropical peatlands 
contain around 13.6 to 40.5 Gt C (Warren et al. 2017) of 152 to 288 Gt C stored by tropical peatlands 
(Ribeiro et al. 2020), which also plays a significant role in the national agricultural sector. This 
organic-rich soil developed extensively in the lowland areas of Sumatra and Kalimantan (Anda et al. 
2021). It provides a site for agricultural developments, particularly for oil palm plantation/OPP 
(Ditjen Perkebunan 2011; Koh et al. 2011; Bou Dib et al. 2018).  

Nitrogen (N) is one of the major soil macronutrients, which is required at a tremendous 
amount for sustaining plant growth and development, particularly for OP plants (Engels et al. 2012; 
Corley and Tinker 2015). N was found to be the second-highest nutrient in mineral or peat soils 
after C (Marschner and Rengel 2012; Pulunggono 2019: Paleckiene et al. 2021). Therefore, maintaining 
N on peat soil in OPPs is critical since its deficiency may lead to leaf abnormalities (Broeshart et al. 
1957), growth retardation (von Uexküll and Fairhurst 1999; Mohidin et al. 2015), and low yields 
(Corley and Tinker 2015). Also, the environmental impact regarding OP-cultivated peatland’s 
capability to emit various greenhouse gasses that can contribute to global climate change with 
respect to N addition (Melling et al. 2006; Chaddy et al. 2019; Chaddy et al. 2021).  

An extensive N collection must be done to attain proper N management at a practical level 
in OPP. A single block (around 30 hectares) is usually established as the smallest sampling unit for 
OPP management. Nevertheless, previous research highlighted the spatiotemporal variability of peat 
nutrients at sub-block scales, along with the gradients of the distance from the oil palm tree, canal 
and mineral soil border, peat thickness, sampling depth, oil palm age, season, and land use 
(Pulunggono et al. 2016; Pulunggono 2019; Pulunggono 2020; Pulunggono 2021; Pulunggono 2022a; 
Pulunggono 2022b). Soil samples must be collected enormously to satisfy the sampling design for this 
detailed approach, especially for large-scale OPP. In addition to these complications, laboratory-based 
N determination is laborious and time-demanding. Moreover, the process requires various chemical 
extractants, some of which are hazardous to the environment.  

Predicting soil N in OPP using a regression model based on pedotransfer functions/PtFs 
could be a solution to a relatively quick N estimate at a specific location without relying too much 
on tedious and arduous work, as well as the potential for environmental degradation. PtFs approach 
is classified as data-driven science (Wadoux 2020a) and can be defined as functions developed from 
easily, routinely, or cheaply observed/determined soil properties to estimate specific soil properties 
that are infeasible to obtain (Bouma 1987; Padarian et al. 2018; Wadoux et al. 2021). The modern PtF 
approach performs statistical learning as its main regressor algorithm. Statistical learning refers to a 
broad set of methods that can be used to understand the data. One widely known example is 
machine learning/ML. ML algorithms can learn the diverse patterns of the data and use the stored 
previous information to improve their performance when learning and predicting new data (Jordan 
& Mitchell 2015; James et al. 2021). Furthermore, the ML algorithm is unconstrained by the 
requirements of underlying theories or pre-specified assumptions (e.g., normality distribution; Wadoux 
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et al. 2020b) when making the prediction. This flexibility makes ML-based PtFs capable of capturing 
linear and non-linear natures of soil variables’ interrelationships (Rossiter 2018; Padarian et al. 2020a). 
Currently, ML-based PtFs are widely used in predicting soil properties, such as soil texture (Liu et 
al., 2020), soil temperature (Abimbola et al. 2021), aggregate stability (Boushilim et al. 2021), soil 
organic C/SOC (Sakhaee et al. 2022), cation exchange capacity (Ma et al. 2021), soil reaction 
(Baltensweiler et al. 2021), available P (Kaya et al. 2022) and other soil macro- and micronutrients 
(Shi et al. 2022; Sihag et al. 2019). Eventhough the research for cultivated tropical peatlands was 
scarce (e.g., Pulunggono et al. 2022a), PtFs employed with ML algorithms have been successfully 

implemented in estimating N in a maize field (Mashaba‐Munghemezulu et al. 2021), rangelands 
(Parsaie et al. 2021), paddy soils (Xu et al. 2021) and other various land uses (Forkuor et al. 2017; 
Hounkpatin et al. 2022; Liu et al. 2022) which is entirely located in mineral soils.  

In a similar location to this study, Pulunggono et al. (2022a) initially tried regression tree/RT-
based PtF models for OP-cultivated tropical peat total N, P, and K contents. However, their report 
only described model performances and interpretation of a single type of tree-based ML algorithm 
and its comparison to multiple linear regression/MLR. As stated by Trontelj ml. & Chambers (2021), 
the RT algorithm is easy to implement and captures non-linear relationships among covariates. 
Unfortunately, the RT-based PfF model’s low predictive performance may arise from smooth, gradual 
changes in the continuous covariates, as can be observed in Pulunggono et al. (2022a) results. 
Furthermore, this present study hypothesized that using more advanced ML algorithms such as 
ensemble trees (e.g., random forest/RF, gradient boosting machine/GBM, and extreme gradient 
boosting/XGB), which are considered more complex than RT algorithm, thereby can handle previous 
constraints and may improve N predictive performance. RF, GBM, and XGB outperformed RT 
algorithm in mapping coastal wetlands (Wen and Hughes 2020) and predicting SOC (Goydaragh et 
al. 2021), Al and base saturation (Pulunggono et al. 2022c), as well as heterotrophic CO2 emission 
from tropical peat (Pulunggono et al. 2022d) and dead root (Pulunggono et al. 2022e) with 
considerable accuracy.  

One of the significant drawbacks of employing advanced and complex ML algorithms in 
PtFs-based modeling is their lack of interpretability and explainability, which are considered ”black 
boxes”. The lack of insight concerning model functioning and structure often emerges, which raises 
difficulties in discerning model information into the established pedological knowledge or soil 
biogeochemical processes (Rossiter 2018; Wadoux et al. 2020a; Wadoux et al. 2020b); i.e., average and 
individual observation-based model predictions (Wadoux et al. 2020b; Wadoux and Molnar 2022), and 
the direction of dependent variable in responding the covariate’s relative effects (Jones et al. 2022; 
Wadoux 2023). Often, the interpretability approach is developed explicitly to assess a particular 
algorithm, such as mean decrease in impurity and Gini index for tree-constructed models and its 
derivatives, e.g., RT and RF; Breiman et al. 2002) and neuron connection weighting via Garson’s or 
Olden’s algorithms for artificial neural networks/multilayer perceptrons (ANN/MLP; Garson 1991; Goh 
1995; Olden and Jackson 2002). Unfortunately, both approaches narrow the interpretation to a single 
or group of several algorithm families, thereby restricting a unified pedological interpretation and 
explanation of the entire diverse models.  

One of the approaches developed to tackle the black box problem of ML algorithm is 
interpretable machine learning with a global approach regardless of the algorithm’s types or model 
agnostic interpretation (Ribeiro et al. 2016). However, a local approach that can explain the model 
response at a given point of the predictor cannot be ignored since the global coverage often fails to 
satisfy a particular mechanism that often occurs in soils. One of the desirable tools for interpreting 
ML models enabling multi-approaches is SHapley Additive exPlanations (SHAP; Lundberg and Lee 
2017), an approach to quantify a Shapley value in Game Theory (Shapley 1953). SHAP is widely 
known for its strong alignment with human intuition (Lundberg and Lee 2017). SHAP has been 
employed in explaining ML models in several soil studies, e.g., soil organic C mapping (Padarian et 
al. 2020b), liquefaction potentials (Jas and Dodagoudar 2023; Sui et al. 2023), soil moisture (Huang et 
al. 2023), available P (Hall et al. 2023) and permeability coefficients (Tran 2022).  

Therefore, this paper tried to (1) fit six pedotransfer models that consisted of general linear 
models/GLM and machine learning/ML to estimate total N distribution in peat drained and 
cultivated for oil palm/OP, (2) compare the ML calibration and validation performances against GLM-
based pedotransfer models, and (3) explain and interpret the model functioning, primarily, key 
drivers in predicting total N distribution.  
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MATERIALS AND METHODS 

Source of The Data 

This study utilized the tropical peat nitrogen (N) dataset from Pulunggono et al. (2022a). The 
study area is oil palm/OP cultivated peatlands in Buatan Village, Koto Gasip District, Siak Regency, 
Riau Province, Indonesia, as shown in Figure 1. The soil dataset consisted of 120 data with an 
unbalanced design, taken at two sites, in the OP plantation (90 data) and its surrounding bush area 
(30 data). The bush is considered to be affected by OP management, particularly in hydrology. Three 
factors were presented, which comprised land use (OP and OP+bush), depth of sample collected (0-
20, 20-40, and 40-60 cm), and distance from the oil palm tree (1.5, 3, and 4.5 m). However, this study 
only used the depth of the sample collected as a covariate due to the lack of data coverage of the 
other two factors. Furthermore, we selected three chemical properties (pH, organic C, and ash 
content) and four physical properties (particle density/PD and bulk density/BD) as the soil covariates, 
which had a total N.  

 

Figure 1.  Location of the studied site 

Model Development 

As stated before, our dataset was referred from Pulunggono et al. (2022). Before being fed 
into the models, the dataset (N=120) was checked manually, which omits its missing values. Then, 
the dataset was bootstrapped (N=500) with replacement, resulting in 609 subsamples. This larger 
dataset was rechecked to match its distribution to the original dataset. Moreover, the bootstrapped 

datasets were then randomized (seed 42) and split into training and validation data. The trained 
data utilized 70% of the dataset (N=428), leaving the other 30% (N=181) as validation data. All the 
information regarding the original dataset is presented in Appendix 1.  

Furthermore, the models were developed mechanistically involving environmental factors and 
soil properties that  following the formula in Equation 1:  

𝑇𝑜𝑡𝑎𝑙 𝑁 ~  𝐿𝑈𝑂𝑃 + 𝑂𝑃𝐷𝑖𝑠𝑡 + 𝐷𝑒𝑝𝑡ℎ + 𝑂𝑟𝑔 𝐶 + 𝐴𝑠ℎ_𝐶𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐶𝑁 𝑟𝑎𝑡𝑖𝑜 + 𝑝𝐻 + 𝑇𝑜𝑡𝑎𝑙 𝐹𝑒 + 𝑃𝐷 + 𝐵𝐷 + 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 
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…………………………………….. Eq. 1 

where: LU_OP, OP_Dist, Depth, and Org C represented land use, distance from oil palm 
tree, depth of sample collection, and organic C, respectively. One hot encoding technique was 
applied to LU_OP and OP_Dist since they present categorical values. LU_OP consisted of 0 and 1, 
representing bush and OP, respectively. The covariate selection process involves correlation analysis 

with a cut-off value of |0.7| and scatter plots to eliminate multicollinearity and identify the 

possibility of non-linear relationships. Both analyses were performed using ggpair() function from 
ggally package (Schloerke et al. 2023). 

This study employed four rule- and ensemble-based tree learners commonly used in other 
studies: Cubist, random forest/RF, gradient boosting machine/GBM, and extreme gradient 
boosting/XGB. Modifying the M5 Model Tree idea from Quinlan (1992; 1993), Cubist first extracted a 
simplified rule set from a single decision tree. To strengthen its predictive power, Cubist employs a 
sequence of rule-based trees and post hoc prediction adjustment from the nearest neighbor in the 
original training dataset (called ”committees” and ”neighbor”, respectively). With this regard, each 
tree is developed from the previous information to compensate for the prediction error. RF algorithm 
performs bootstrap aggregating and random subspace methods, which resample the training data 
and select particular covariates in random terms to build multiple fully grown trees. An individual 
deep tree has a higher variance by overfitting its training data. The RF algorithm minimizes this 
issue by averaging all the constructed trees to obtain model prediction (Ho, 1998; Breiman, 2001). 
GBM and XGB, in another way, perform boosting techniques, which sequentially construct shallow 
trees (also named ”stumps”). A single stump is built similarly to RF using random resampling; 
meanwhile, it is considered a weak learner due to its over-generalization. Differently from RF, every 
successive stump was grown like committees in Cubist. Both algorithms minimize errors at each turn 
using stochastic gradient descent, which optimizes the model performances (Friedman, 2001; 
Friedman, 2002). Furthermore, XGB optimized the tree-boosting algorithm by introducing a particular 
approach to handle sparse data and using parallel and distributed computing (exploiting the out-of-
core computation). This results in learning quickly from a large-scale dataset with accurate 
predictions (Chen and Guestrin, 2016).  

Moreover, all the ML models were compared to the classical generalized linear models/GLMs 
and their derivatives, such as multiple linear regression/MLR, logistic regression (Log-GLM), and 
multivariate adaptive regression spline/MARS (as a more sophisticated polynomial-based model). All 
GLMs-based models were trained with a caret package (Kuhn 2023) using five-fold cross-
validation/CV, repeated ten times. Furthermore, ML models were trained iteratively and exchangeably 

using caret and algorithm-specific packages, i.e., earth (Milborrow 2023), ranger (Wright et al. 
2023), gbm (Greenwell et al. 2022), and xgboost (Chen et al. 2023) with similar CV configuration. 
Optimum hyperparameter settings for MARS, RF, GBM, and XGB models are shown in Table 1. 
Meanwhile, the table did not include MLR and Log-GLM models since no particular configurations 
were applied to their algorithms. 

Table 1.  Model parameterization for all final models used in this study 

Algorithm: MARS Cubist RF GBM XGB 

Package: caret; earth caret; Cubist randomForest; 
caret 

caret; gbm caret; xgboost 

Hyperparameter  degree: 3 commitees:100 mtry: 11 n.trees: 6000 nrounds: 10000 

Settings: nprune: 23 neighbors:1 ntree: 500 interaction.depth: 3 max_depth: 4 

    shrinkage: 0.3 colsample_bytree: 0.8 

    n.minobsinnode: 3 eta: 0.1 

     gamma: 0 

     min_child_weight: 2 

     subsample: 0.5 
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Model Agreement 

This study employed RMSE, MAE, and R2 (coefficient of determination/Rsquared) to evaluate 
the model performance by inspecting the agreement between the predicted and observed total N 
values. This study adopted two methods, i.e., performance-based (1) calibration and (2) validation 
data. The first method (executed using caret::resamples() function) took advantage of available 
performance data from the repeated CV fold (N=50) that are computed internally during the training 
process. The last method was executed manually using 30% validation data. We added a bias metric 
to point out the average direction of model prediction towards their observed values using 

modelmetrics package (Hunt 2022). The entire specific information for all model agreements is 
available in Appendixes 2 and 3.  

Model Interpretation: Shapley Additive Explanation (SHAP) Value 

Game Theory generally studies the mathematical explanation of games and their players' or agents’ 
collaborative interaction and strategies (Nash 1950; Rasmusen 1989). Within the context of modeling, game 
theory posits that the predictive model is a confluence of multiple collaborative games. In each game or 
prediction attempt, players (or covariates of the model) strategically collaborate to achieve a specific goal, 
which in this context refers to a predicted value. In exchange for their collaborative efforts, each player 
receives a "share" or "payout" corresponding to their individual contribution. The deviation from the mean 
prediction for the complete dataset determines the collaborative total loss or gain.  

The Shapley Additive Explanation, or SHAP, was first described in Lundberg and Lee (2017) paper 
and provides a conditional expectation function to calculate the Shapley value (Shapley 1953). The Shapley 
value quantifies an individual player's contribution to a coalition, representing the expected marginal 
contribution of the covariates across all possible combinations. Following Padarian et al. (2020) and Molnar 

(2023) explanations, the Shapley value can be computed by fitting the model 𝑓𝑆⋃{𝑖}  involving the covariate 

𝑖, while withholding covariate 𝑖 in another model, denoted as 𝑓𝑆 . Covariate 𝑖’s marginal contributions is 

calculated using the difference between the model prediction on the input x (or mathematically expressed 

as 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)). This process is repeated iteratively, considering the complete power set of the 

covariates (including all possible subsets of 𝑆 ⊆ 𝐹 and the set F ) to obtain the weighted average of all 

marginal contributions (𝜙𝑖  ∈  ℝ), as summarized in Equation 2.  

𝜙𝑖 =  ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]

𝑆⊆𝐹∖{𝑖}

  

 …………………………………….. Eq. 2 

However, due to its prohibitive nature in handling large amounts of covariates or using thousands 

of simulations, for the more complicated model, we must re-train computationally exhaustive 2𝐹|𝐹| models, 
the Shapley value can be approximated by SHAP. This method simplifies the Shapley value estimation 
using sampling approximation derived from the model’s training dataset, accelerating the computation. 

According to Lundberg and Lee (2017), SHAP is based on using 𝑔 as a simpler explanation model in 

explaining 𝑓 as original prediction model. Following the concept of local explanation, a prediction model 

𝑓(𝑥) can be explained using simplified input 𝑥′ that map an original inputs using a mapping function 

𝑥 = ℎ𝑥(𝑥′). This local approach ensures 𝑔(𝑧′) ≈ 𝑓(ℎ𝑥(𝑥′)) while it applied by different set of inputs 

𝑧′ = 𝑥′ (Equation 3).   

𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑖𝑧𝑖
′

𝑀

𝑖=1

 

…………………………………….. Eq. 3 

The inputs 𝑧′ are derived from the training dataset using a particular resampling procedure. 

Furthermore, the marginal effect 𝜙𝑖 to each covariate (Equation 2) is supplied to Equation 3 as a linear 

function of binary variables (𝑧′ ∈ {0,1}𝑀), where 𝑀 is the number of simplified input features and the 
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number of {0,1} represents the availability (available or not) of covariate contribution. The prediction of 
model 𝑓(𝑥) can be approximated by summing the effect of all covariate contributions in Equation 3. 

Furthermore, SHAP provides a missingness solution for Equation 1, where 𝑓𝑥(𝑧′) = 𝑓(ℎ𝑥(𝑧′)) =

𝐸[ 𝑓(𝑧) | 𝑧𝑠 ], and 𝑆 is the set are non-zero indexes in 𝑧′, whereas 𝑓(𝑧𝑆) =  𝐸[𝑓(𝑧) | 𝑧𝑠] for handling 
missing values (𝑧𝑠has missing values for covariates not in the set 𝑆), as their ordering calculations 
according to Lundberg and Lee (2017), were depicted in Figure 2.  

 
Figure 2.  The graphical concept of mathematically quantifying and ordering SHAP values for each 

covariate when conditioning on that covariate. This figure is derived from Lundberg and Lee 
(2017) paper.  

Quantifying SHAP for local and global explanation via Shapley value was attained using fastshap 
and shapviz packages (Greenwell 2023; Mayer and Stando 2023) in the R environment. The trained models 
were first explained using the fastshap::explain() function. To provide accuracy and stability of the 
explanation, 1000 Monte Carlo resampling technique (nsim = 1000) iteratively computed to supply the 
equation 2, following Štrumbelj & Kononenko (2013) approach (Greenwell 2023; Molnar 2023). Then, the 
explaining information was transferred to the shapviz object, excluding the MARS-based PtFs model. Since 
the fundamental of MARS is the automatic covariate selection to fit the dataset’s underlying distribution, 
forcing all covariate predictions using the Shapley value is impossible.  

The global explanation was computed using the training dataset and visualized using 

sv_importance() function, presented by covariate importance and beeswarm plots. The first plot employs 
the mean Shapley value by averaging all individual contributions; meanwhile, the latter depicts all 
individual contributions in a single plot. The local explanation was evaluated using the prediction at 

row_id=c(3,100), then visualized as waterfall plots using sv_waterfall() function. Furthermore, the 
(expected) covariate marginal contribution was determined by utilizing the sv_dependence() function. 
This involved plotting individual Shapley values against the four most significant covariates of the PtF 
models, referred to as dependence plots. Notably, the strongest interacting covariates were represented 
through color gradients. To maintain cohesion and conciseness within the paper, only the most proficient 
GLM and ML algorithms were selected for visualization, providing a comparative analysis of their 
performance in predicting the total N in peat. However, the performances of other PtFs' models, as well as 
the associated Shapley-based explanations, were extensively documented in appendices 5, 6, 7, and 8 for 
supplementary reference. 

 

 

RESULTS  

Dataset Description and Covariate Relationships 

The results of the peat chemical analyses were summarized in Figure 3, distinguishing 
between the training and validation datasets. The figures revealed that the chemical variables in 
both datasets fell within the typical range observed in tropical peat, as reported by previous 
researchers (e.g., Adeolu et al. 2018; Dhandapani et al. 2021; Harianti et al. 2018; Hashim et al. 2019; 
Pulunggono et al. 2022b; Sangok et al. 2017). However, the recorded total Fe in this study was three 
times lower than that observed by Dhandapani et al. (2020) in similar land use. The frequency 
distribution of total N in the training dataset mirrored that of the validation dataset, as indicated by 
the presence of bimodal peaks in Figure 3. Additionally, other soil covariates displayed similar 
patterns. 
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Figure 3.  All covariate distributions are divided by training (green, hex:#69b3a2) and validation 
(purple, hex:#404080) dataset. All presented soil covariates were the final result after the 
collinear covariates were eliminated.  

 

Figure 4 depicted the relationships between variables, showcasing that total N exhibited a 
moderately significant positive linear relationship with sampling depth, while its relationship with 
total Fe was low and insignificant. Conversely, total N demonstrated a significant negative 
correlation with organic C. Similar but insignificant trends were observed for pH, bulk density (BD), 
and particle density (PD).High correlations were found between organic C against CN ratio and ash 

content and BD and porosity at the initial model training (>|0.7|; data not presented), which may 
introduce high multicollinearity. Considering their weak relationship with total N, CN ratio, ash 
content, and porosity were dropped from the PtF models. All low to moderate correlations presented 
in Figure 4 showed the possibility of non-linear relationships between total N against environmental 
factors and soil covariates. 
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Figure 4.  The relationships between each covariate used in this study 

 

Pedotransfer Model Agreement 

This study found that the Rsquared, RMSE, and MAE of all PtF models were diversely 
varied. All ML algorithms outperformed GLM-based PtF models. It could be seen on a relatively 
higher Rsquared (> 0.90) and lower RMSE (<0.04) and MAE (<0.02) of ML-based PtF models 
computed from the calibration method (Figure 5). Validation agreements also showed similar metric 
patterns with higher performances (Table 2).  

As shown in Figure 5 and Appendix 3, GBM and XGB algorithms achieved remarkable and 

stable agreements near the perfect scores (e.g., Rsquared > 0.98). Both regressors also possessed the 
lowest RMSE and MAE compared to other algorithms, whereas XGB outperformed GBM regarding 
median and mean values in both metrics. The Cubist algorithm also yielded high-performance 
metrics comparable to GBM and XGB and better than RF. However, it had unstable performances, as 
can be observed by higher variability throughout the greater interquartile length compared to GBM 
and XGB. RF had good agreement (Rsquared = 0.97) and lagged behind GBM, XGB, and Cubist. 
Consequently, it achieved the worst performance compared to other ML algorithms but was still 
more stable than Cubist and considerably higher than all GLMs. MARS was the best GLM regressor. 
It attained a moderate agreement, which accounted for half of ML accuracies. Contrastingly, LM and 
LogGLM were the worst regressors evaluated by all metrics.  

All the ML algorithms had more comparable predictions when tested using validation data 
(Table 2), especially for the Rsquared metric. Cubis outperformed all other ML-based PtF regressors 
concerning all the evaluated metrics. GBM and XGB had comparable metrics, similar to Cubist in 
Rsquared but remarkably lower in three other metrics. Similar to the calibration method, GLM-based 
PtF models yielded the lowest Rsquared. Particularly for the MARS algorithm, it scored the worst 
Rsquared (R2=0.17) and comparable RMSE and MAE to other GLM-based PtF regressors (both 0.15 
and 0.13, respectively). As negative bias shows, RF and GBM underestimate the total N values over 
their actual values. Oppositely, the other algorithms attained contrasting results. 
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Figure 5.  Calibration agreement of six GLM and ML-based PtF models, computed from repeated 

five-fold CV during the training process (N=50) 
 
Table 2.  Validation agreement of six GLM and ML-based PtFs models, computed using 30% of the 

dataset 

Model Rsquared RMSE MAE BIAS 

MLR 0.329 0.140 0.115 9.12×10-5 

LogGLM 0.337 0.139 0.114 -1.06×10-4 

MARS 0.720 0.091 0.064 -4.94×10-3 

CUBIST 0.999 1.21×10-7 2.33×10-8 6.71×10-9 

RF 0.992 1.68×10-2 7.87×10-3 1.40×10-3 

GBM 0.999 1.59×10-4 1.02×10-4 5.98×10-6 

XGB 0.999 1.83×10-3 8.72×10-4 1.54×10-4 

 

Explanations of Pedotransfer Models based on SHAP  

Figure 6 shows the PtF models’ global explanations by visualizing differences in taking the 
important covariates between LogGLM, GBM, and Cubist algorithms based on Shapley values, 
depicted in their averaged and individual covariates contributions. Except for RF, all models agreed 
on sampling depth, organic C, and total Fe as their most important covariates, regardless of 
contrasting prediction accuracies (Figure 6, Appendix 5). LogGLM seemingly relied heavily on depth 
as its first important covariate, while other covariates had low to negligible strengths. This opposes 
GBM and Cubist, which also reserved total Fe, BD, and pH as additional substantial covariates with 
comparable moderate contributions. Unexpectedly, we detected weak importance of land use and 
distance from the OP tree on the best performer PtF algorithms (RF, Cubist, GBM, and XGB), while 
the latter covariate showed up at GLMs (Figure 6, Appendix 4). 

The individual contribution in beeswarm plots in Figure 6 depicted that in particular ranges 
of their values, all important covariates in both algorithms might negatively contribute to the total N 
prediction while also resulting in positive contributions in different ranges. For instance, in the GBM 
algorithm, a negative to low contribution is obtained when the peat is sampled over 40 cm and the 
peat materials possess a relatively higher organic C. Oppositely, deeper sampling, and lower organic 
C content primarily contribute to positive Shapley values. This pattern was seemingly amplified in 
the Cubist model, particularly for higher depth. Other covariates also exhibited a similar pattern, 
especially in total Fe. This covariate substantially contributed to the negative and positive Shapley 
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values at lower and higher concentrations, respectively. However, a low contribution is obtained at 
total Fe’s moderate content (Figures 6, 7, and 8). An interesting pattern was also observed in the 
land use covariate as a less critical covariate, highlighting a substantial negative contribution in the 
absence of OP (Figure 6). 

The local explanation shown in Figure 7 decomposed the PtF model's strategy in estimating 
total N using covariate information available in row_id = c(3,100). It can be observed that the 
behavior of PtF algorithms deviates from their general explanations, as captured in Figure 6. In 
GBM, the important covariates were rearranged, with total Fe and sampling depth mainly and 
diametrically contributing to the total N prediction. Nevertheless, all notable contributions were 
supplied by important covariates as generally presented in Figure 6 (i.e., total Fe, sampling depth, 
pH, and BD) except for organic C. As shown in Figures 6 and 8, the likelihood of low contributions 
of organic C to the N prediction could be detected at higher values (more than 54%). 

The dependency plot in Figure 8 presented an individual marginal contribution of the four 
most important covariates (i.e., sampling depth, organic C, total Fe, and BD) on the total N 
prediction, along with their strongest interacted covariates. LogGLM fitted predictable linear 
relationships on both covariates; meanwhile, GBM captured non-linear patterns. It could be observed 
that the Shapley values responded with a flat positive slope towards a sampling depth over 40 cm. 
The relationship had a steep positive slope at deeper sampling in OPP, indicating a Shapley value’s 
strong response. Organic C generally had a contrasting slope direction against sampling depth, 
measured using LogGLM and GBM algorithms. In LogGLM, low organic C and high PD contribute 
positively to total N prediction, whereas opposite patterns exhibited in contrasted both covariate’s 
values. The marginal contribution relationships of GBM for organic C, total Fe, and BD were more 
complicated and thus suggested fluctuating patterns; however, they follow similar general trends 
with LogGLM.  

We observed that the peat's seemingly physical properties were the invariable counterpart of 
organic C, judged by its appearance as the strongest interacted covariates on both contrasting 
algorithms. Other algorithms also exhibited similar relationships, including LM and RF (Figure 8; 
Appendix 7). 
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Figure 6.  SHAP-based Global explanation covariate contributions that were captured by averaging 

all contributions of each covariate (left) and all individual Shapley values (right), 
calculated according to LogGLM (above), GBM (middle), and Cubist (bottom), as the best 
GLM and ML-based PtF regressors, respectively  
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Figure 7.  SHAP-based Local explanation captured by covariate contributions to an individual 

prediction on row_id = 3 (left) and row_id = 100 (right) based on Shapley values, 
calculated according to LogGLM (above), GBM (middle), and Cubist (bottom) as the best 

GLM and ML-based PtF regressors, respectively. Note that f(x) denotes the prediction on 
the SHAP scale, while E(f(x)) refers to the baseline SHAP value. 
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Figure 8.  The dependency plot of SHAPs against the four most important covariates is calculated 
according to LogGLM (left) and GBM (right) as the best GLM and ML-based PtF 
regressors, respectively. The strongest interacting covariates supplied the color gradients.  
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DISCUSSION 

Intercomparison between ML-based PtF Model: Insight from Robust Statistical Learning 

This study demonstrated that using datasets from Pulunggono (2022a), the performances of ML-based 
PtF models were satisfactory in estimating total N in OP-cultivated tropical peat (Figure 5 and Table 
2). Based on the calibration (Figure 5) and validation methods (Table 2), the best performer 
algorithms for PtF models were GBM, XGB, and Cubist. The agreement metrics of best-performer 
algorithms were relatively higher than those reported by Song et al. 2020 in predicting the total N 
in mineral soils. Furthermore, our GLM-based PtF modes exhibited low agreements, contrasting with 
Mesele and Ajiboye (2020) and Karim (2023) studies. This small-scale study highlights the potential to 
use artificial intelligence to predict nutrients in tropical peat drained and cultivated by OPP, 
particularly at the spatial and temporal scales.  

  Our results partially showed that simple Ptf models (i.e., based on GLM) could suffer 
from several possible confounding factors, i.e., complex and non-linear relationships, covariate gaps, 
and superficial/unflexible algorithmic design. The constraint introduced by the combination of 
observation is commonly found in predictive modeling worldwide. Especially in predicting soil 
properties, higher sample sizes had a vital role in maximizing the model’s representation of natural 
variance (Maharana et al. 2022; Xu and Goodacre 2018). Most PtF backed with ML algorithms are 
trained using large samples (e.g., Baltensweiler et al. 2021; Liu et al. 2020; Moghaddam et al. 2020; 
Shi et al. 2022). Due to financial and accessibility constraints in many peatland studies, the sample 
size is often inadequate to develop a robust predictive model. Low agreement of ML-based PtF 
models due to low observation constrained by unflexible algorithmic design can be observed in the 
Pulunggono et al. (2022a) study. 

  Furthermore, Rajput et al. (2023) and Lindstromberg (2023) reviewed that undersampling 
can lower the probability of producing true effects, enhancing false-negative results, and 
exaggerating the winner’s curse effect. We overcome this limitation by applying a bootstrapped 
resampling technique, which generates a particular Monte-Carlo simulation for random subsampling 
with a relatively similar underlying distribution to the original dataset (Figure 2; Appendix 1). 
Nevertheless, we acknowledge that our resampling and data-splitting techniques might be biased, 
and the propagated errors may result in lower accuracy in the field deployment compared to their 
performance in the current report. Both techniques assume independent observations, which 
consequently precludes spatial autocorrelation (Efron 1979; Efron and Tibshirani 1994;  Karasiak et al. 
2021; Lyons et al. 2018; e.g., Iranpanah et al. 2003; Tang et al. 2006) that unaccounted for our 
environmental factors.  

  Eventhough all bootstrapped samples, including their dependent and independent 
covariates, had similar distribution compared to the original dataset ((Figure 2; Appendix 1) and 
possessed significant covariates (Appendix 2), our GLM-based PtF models failed to accomplish 
comparable performances towards tree-based ML regressors (Figure 5; Table 2). The summary of the 
LM model indicated that nearly all covariates significantly influenced total nitrogen (N), except land 
use difference and particle density. Conversely, the Log-GLM produced unsatisfactory results in 
identifying influential factors, indicating a lack of logistic-based relationships between the total N 
value, the studied factors (encoded as binary variables), and soil covariates (Appendix 2). It can be 
observed that under a high sample size, the ML-based PtF algorithm yielded near-perfect scores. This 
condition was also observed in validation-based performance since the validation dataset resembles 
those used for training (Figure 2). Since the underlying mathematical nature of bootstrapping 
neglects outliers, it may quickly lessens the learning pace of the machine learners, but not for GLMs 
due to its rigid OLS estimator. These results may occur due to delicate interrelationships introduced 
by the combination of environmental factors and soil covariates (Figures 4, 6, and 8), which could be 
better captured by more complex and flexible statistical learning algorithms at large observation, e.g., 
GBM or a computationally efficient algorithm such as XGB. Concern raised by several soil scientists 
(Rossiter 2018; Wadoux et al. 2020c) and researchers from other fields (McPherron et al. 2022; Lypton 
2018), who look the noticeable and intriguing predictive ability that resulted from ML and its 
associated statistical methods (e.g., bootstrapping, cross-validation, jacknifing, Monte-Carlo simulation 
and others) are must be taken with care by relating its pattern recognition to an established 
pedological knowledge.   

  In this study, we remark some insight for future research in PtFs-based nutrient modeling 
in peat as follows:  
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1) Supplying more flexible GLM-based algorithms for PtFs, for instance, partial least squares/PLS or 
principal component regression/PCR may remedy the GLM’s performance problem, as suggested 
in other modeling studies (Li et al. 2020; Sarkar et al. 2023; Xu et al. 2018), 

2) An appropriate approach for dataset resampling and splitting is necessary for insufficient sample 
size as well as on which the observation had spatial, temporal, or hierarchical dependencies 
(Karasiak et al. 2021; Lyons et al. 2018; Roberts et al. 2017). Despite its controversies (Young 1994; 
McPherron et al. 2022), other modeling studies embrace resampling as a tool to provide 
adequate input for data-hunger ML algorithms (Huang and Huang 2023). 

3) Training RF, GBM, and XGB as the primary regressors using large sample size and covariates 
might require more sophisticated approaches in tuning their internal parameters (e.g., applying a 
customized tidy-modelling instead of caret; Kuhn and Silge 2023) to maximize their full 
computational capability and flexibility. We consider Cubist the most convenient algorithm 
among other ensemble-based tree learners since it carries explainable information, a simple 
tuning process, and robust predictive power. 

4) Substantial model performance as well as relational and pattern information based on ML 
algorithms, must be carefully handled, highlighting their interpretation from established 
pedological theory (Rossiter 2018) and position in knowledge discovery (Wadoux et al. 2020c).  

Key Drivers Regulating Total N Prediction in PtFs : Bridging SHAP-based Findings with 

Pedological Explanation 

  Based on the SHAP method, our models, including the best performer ML-based PtF 
model, highlighted the higher importance of sampling depth and organic C in estimating total N in 
cultivated tropical peat (Figures 7 and 8). High-performance matrices also reported by Song et al. 
(2020) in predicting total N in China’s mineral soils using LM-based PtFs and soil properties (SOC, 
CEC, and sand content), achieving Rsquared and RMSE that were ranging from 0.55 to 0.93 and 0.21 
to 0.79, respectively. Training PtF models from DSM drastically decreased Rsquared to around 0.03 to 
0.53. Using CEC, sand content, and topography for total N estimation in peat might be unuseful in 
our study area due to their homogeneous nature from a relatively close sampling site and similar 
peat thickness. In Ghanaian mineral soils, Mesele and Ajiboye (2020) developed eight successful PtFs 
(Rsquared 0.77 – 0.85; N = 120) in predicting total N using organic C as a covariate. Also, in mineral 
soils, Karim (2023) reported that polynomial- and linear-based PtFs could be estimated with higher 
precision (Rsquared = 0.82 and 0.81, RMSE = 0.18, respectively). Their results could not be applied to 
the OPP peat soils since we found contrasting results (Figure 5; Table 2).  

  Our results agreed with the previous findings that revealed the relationships of soil 
organic C to N supply in peat (Pijlman et al. 2020). Kononen et al. (2018) reported that microbial C 
and N were highest at the peat surface and decreased along with increasing depth. Based on their 
report, depth can be used as a proxy of N since high microbial occurrence indicates high 
decomposition potential. On the other hand, our SHAP study found a significantly contrasting 
pattern (Figures 4, 7, and 8), which may indicate higher N transportation and organic matter 
decomposition at the subsurface peat. Eventhough Hashim et al. (2019) suggested that shallow 
groundwater table generated higher N and other base cations subsurface leaching, the study site had 
mature OP and hydrologically managed, as well as periodic shallow water table during the rainy 
season (Pulunggono et al. 2023f). We argued that these conditions might allow the fertilizer-derived 
mobile N fractions to be transported downward near GWL (Rückauf et al. 2004; Zhao 2001), and 
more homogeneous aeration throughout the upper 60-70 cm generates a higher decomposition at the 
lower profile.  

  Glendining et al. (2010) conducted a study that revealed the necessity for improving PtF 
predictors in accurately estimating total nitrogen (N) content in soils with more than 10% soil 
organic carbon (SOC). Their research, which had a larger sample size (N=265) than ours, also 
demonstrated that higher N content introduced significant variability. These findings align perfectly 
with the scope of our study. Notably, all peat samples analyzed in our study exhibited SOC levels 
exceeding 30% and higher N content, as depicted in Figure 3. Given that our study site is a 
relatively flat region at the river backswamps (Figure 1), topographic covariates may not contribute 
significantly to the PtF models, as they were not accounted for in our analysis. Additionally, our 
Shapley value analysis indicated that total N exhibits non-linear and complex interrelationships with 
the environmental factors and soil covariates, as illustrated in Pulunggono (2022a), as well as Figures 
4, 6, and 8. These factors, coupled with the absence of substantial covariates exhibiting a linear 
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relationship with total N, resulted in lower performance of GLM-based models, as depicted in Figure 
5 and Table 2.  

  This study accounted for the difference in land use in predicting total N. Song et al. 
(2020) found that the performance of PtF models decreased when trained from different landscape 
compositions. Differently from the established knowledge, at the local scale, our study neglected the 
contribution of land use difference (OP vs. bush) and distance from OP in predicting total N in 
drained OPP peat (Figures 6 and 7). The land use difference might induce these results since we use 
the dataset combining OP and bush data. This difference might occur due to varying degrees of 
decomposition stage and N supply from fertilizer. To maximize nutrient absorption at the highest 
root density, fertilization and amelioration are conducted on the outer boundary of the fertilization 
circle.  

 

CONCLUSIONS 

  The predictive performances of ML-based PtF models in estimating total N content in 
cultivated tropical peat were found to be significantly superior to those of GLMs, using bootstrapped 
dataset from Pulunggono (2022a). The calibration and validation approaches revealed that the top-
performing algorithms for PtF models were GBM, XGB, and Cubist, while the least effective models 
were LM and Log-GLM. The SHAP method analysis indicated that sampling depth and organic C 
were consistently identified as the most influential factors across all models, regardless of the 
predictive algorithm used. Additionally, ML algorithms highlighted total Fe, pH, and BD as 
additional significant covariates. Local explanations based on Shapley values suggested that the 
behavior of PtF-based algorithms might deviated from their global explanations. This study 
emphasized the crucial role of ML algorithms and game theory in accurately predicting total N 
content in peat that has been drained and cultivated for OPP, while also shedding light on the 
behavior of the models in relation to soil biogeochemical processes.  
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